
EKF Derivations

September 14, 2014 Nicholas Rotella

Quaternion Review and Conventions

It is important to note that there are two different conventions for using quaternions,
each of which is self-consistent; unfortunately, the quaternion algebra used in these
conventions is often mixed up in the literature, resulting in inconsistent implemen-
tations [?]. We use that proposed as a standard by JPL [?] which was also used in
[?] on which this work and that in [?] was based. A review of quaternions using this
convention is given in this section.

Briefly, quaternions are one of several choices for representing SO(3), the Lie group
of rotations. The advantage of quaternions over other parameterizations is their
numerical properties, efficiency and lack of singularities. We denote a quaternion by

q =


qx
qy
qz
qw


where qw and qv = [qx, qy, qz]

T are the scalar and vector components, respectively.
Note that the ordering of these components does not depend on any conventions and
is purely a matter of preference. We choose this ordering here to match the literature
but actually implement quaternions in the reverse order to match the SL simulation
environment.

All rotations are active, meaning that they act to rotate vectors; the quaternion
representing the base orientation is written as q = qBW which specifies a rotation
from the world frame W to the base frame B. This quaternion corresponds to the
rotation matrix C = C[q] which rotates vectors defined in the world frame into the
base frame.

Successive rotations about local axes are composed via left-multiplication, ie RC
A =

RC
BR

B
A represents a rotation from frame A to frame B (given in terms of the frame

A basis) followed by a rotation from frame B to frame C (given in terms of the
frame B basis). Analogously, we have qCA = qCB⊗qBA for quaternions where ⊗ denotes
quaternion multiplication.
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A vector in frame A is rotated into frame C as vC = RC
Av

A, with the reverse transfor-
mation given by vA = (RC

A)−1vC where (RC
A)−1 = RA

C = (RC
A)T since this is a rotation

matrix (orthogonal matrix with det = +1). Vector rotations using quaternions are
achieved through conjugation as

vC = qCA ⊗
(
vA

0

)
⊗ (qCA)−1

where [vA, 0]T is called a pure quaternion and (qCA)−1 = qAC = [−qx,−qy,−qz, qw] is
the inverse or conjugate quaternion satisfying qCA ⊗ (qCA)−1 = (qCA)−1⊗ qCA = qI where
qI = [0, 0, 0, 1] is the identity quaternion.

Quaternion multiplication is defined by

q ⊗ p =


qwpx + qzpy − qypz + qxpw
−qzpx + qwpy + qxpz + qypw
qypx − qxpy + qwpz + qzpw
−qxpx − qypy − qzpz + qwpw


This can be written more concisely as the matrix vector multiplication

q ⊗ p = L(q)p =

(
qwI − q×v qv
−qTv qw

)(
pv
pw

)
= R(p)q =

(
pwI + p×v pv
−pTv pw

)(
qv
qw

)
where qv = [qx, qy, qz]

T is the vector part of q and

q×v =

 0 −qz qy
qz 0 −qx
−qy qx 0


is the skew-symmetric matrix corresponding to the vector qv.

The rotation matrix corresponding the quaternion q is given by

C[q] = (2q2w − 1)I − 2qwq
×
v + 2qvq

T
v

=

2q2x + 2q2w − 1 2(qxqy + qzqw) 2(qxqz − qyqw)
2(qxqy − qzqw) 2q2y + 2q2w − 1 2(qyqz + qxqw)
2(qxqz + qyqw) 2(qyqz − qxqw) 2q2z + 2q2w − 1


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where the first equation can be seen as equivalent to Rodrigues’ identity using the
quaternion exponential map

exp (ω) =

(
sin ( ||ω||

2
) ω
||ω||

cos ( ||ω||
2

)

)

which represents a rotation of ||ω|| about an axis ω/||ω|| as a quaternion. Letting
δφ be an infinitesimal rotation, we see that

δq = exp (δφ) ≈
(

1
2
δφ
1

)
is the first-order approximation of an incremental quaternion. It follows from the
definition of C[q] that we have the first-order approximation

C[δq] ≈ I − δφ×

This can also be seen as the first-order approximation of the exponential map for
rotation matrices

exp (δφ×) =
∞∑
i=0

(−δφ×)i

i!
≈ I − δφ×

It follows that the first-order expansion of q about a nominal quaternion q̄ can be
written in matrix form as

C[δq ⊗ q̄] = C[δq]C[q̄] = (I − δφ×)C̄

where C̄ = C[q̄]. This approximation will be used in the derivations of the linearized
filter dynamics in the next section.

The derivative of a quaternion is related to the angular velocity ω by the equation

q̇ =
1

2

(
ω
0

)
⊗ q

and the first-order approximation of δ̇q is given by

δ̇q ≈
(

1
2
δφ̇
0

)
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Linearization

Linearization of both the process and measurement models is performed analytically
by expanding the filter states about their expected values using first-order Taylor
series approximations. Products of small deviations are considered to be negligible,
ultimately resulting in linear equations in terms of state deviations.

Process Model:

Position:

The original process model for the time-evolution of the position is

ṙ = v

Letting r ≈ r̄ + δr and v ≈ v̄ + δv leads to

d

dt
(r + δr) = ṙ = v̄ + δv

From which it follows that
˙̄r + δ̇r = v̄ + δv

However, we know that the expected value of ṙ is ˙̄r = v̄, so we finally have

δ̇r = δv
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Velocity:

The original process model for the time-evolution of the velocity is

v̇ = CT (f̃ − bf − wf ) + g

Let C ≈ (I − δφ×)C̄, v ≈ v̄ + δv, and bf ≈ b̄f + δbf so that

d

dt
(v̄ + δv) = v̇ = C̄T (I + δφ×)(f̃ − (b̄f + δbf )− wf ) + g

Simplifying yields

˙̄v + δ̇v = C̄T (I + δφ×)(f̄ + δf) + g

where we have defined f̄ = f̃ − b̄f and δf = −δbf − wf to be the “large-signal” and
“small-signal” accelerations as in [?]. Expanding the right hand side yields

˙̄v + δ̇v = C̄T f̄ + C̄T δf + C̄T δφ×f̄ + C̄T δφ×δf + g

Recognizing that ˙̄v = C̄T f̄ + g is the expected value of the velocity process model
equation, we are left with

δ̇v = C̄T δf + C̄T δφ×f̄ + C̄T δφ×δf

The last term on the right hand side is the (cross) product of two small vectors and
can thus be neglected. This leaves

δ̇v = C̄T δf + C̄T δφ×f̄

Using the fact that a×b = −b×a and expanding the expression for δf finally results
in

δ̇v = −C̄T f̄×δφ− C̄T δbf − C̄Twf
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Quaternion:

The original process model for the time-evolution of the quaternion is

q̇ =
1

2

(
ω̃ − bω − wω

0

)
⊗ q

We define a deviation δq from the expected value q̄ of the pose q by q = δq ⊗ q̄ and
let bω ≈ b̄ω + δbω so that

q̇ =
d

dt
(δq ⊗ q̄)

1

2

(
ω̃ − (b̄ω + δbω)− wω

0

)
⊗ q = δ̇q ⊗ q̄ + δq ⊗ ˙̄q

Simplifying and using the fact that ˙̄q = 1
2

(
ω̃ − b̄ω

0

)
⊗ q̄ yields

1

2

(
ω̃ − (b̄ω + δbω)− wω

0

)
⊗ q = δ̇q ⊗ q̄ + δq ⊗

(
1

2

(
ω̃ − b̄ω

0

)
⊗ q̄
)

Multiplying on the right of both sides by q̄−1 and recognizing that δq = q⊗ q̄−1 yields

1

2

(
ω̃ − (b̄ω + δbω)− wω

0

)
⊗ δq = δ̇q + δq ⊗ 1

2

(
ω̃ − b̄ω

0

)
Solving for δ̇q yields

δ̇q =
1

2

(
ω̃ − (b̄ω + δbω)− wω

0

)
⊗ δq − δq ⊗ 1

2

(
ω̃ − b̄ω

0

)
=

1

2

(
ω̃ − b̄ω

0

)
⊗ δq − δq ⊗ 1

2

(
ω̃ − b̄ω

0

)
+

1

2

(
−δbω − wω

0

)
⊗ δq

where the second step results from the fact that we can split a pure quaternion into
the sum of multiple pure quaternions (since they are just vectors) and distribute
them over quaternion multiplication. For the quaternion δq corresponding to the

small rotation δφ, we may write δq ≈
(

1
2
δφ
1

)
and thus δ̇q ≈

(
1
2

˙δφ
0

)
so that
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(
1
2

˙δφ
0

)
=

1

2

(
ω̃ − b̄ω

0

)
⊗
(

1
2
δφ
1

)
−
(

1
2
δφ
1

)
⊗ 1

2

(
ω̃ − b̄ω

0

)
+

1

2

(
−δbω − wω

0

)
⊗
(

1
2
δφ
1

)
Using the fact that quaternion products can be written as matrix-vector products as
shown in the previous section and letting ω̂ = ω̃ − b̄ω, we can write the above as(

1
2

˙δφ
0

)
=

1

2

[(
−ω̂× ω̂
−ω̂T 0

)
−
(
ω̂× ω̂
−ω̂T 0

)](
1
2
δφ
1

)
+

1

2

(
−(−δbω − wω)× (−δbω − wω)
−(−δbω − wω)T 0

)(
1
2
δφ
1

)
=

1

2

(
−2ω̂× 0

0T 0

)(
1
2
δφ
1

)
+

1

2

(
−δbω − wω

0

)
where the second step results from simplifying and eliminating products of small
quantities (products of deviations and products of noise with deviations) in the sec-
ond term. Multiplying out this expression yields the equations

1

2
˙δφ = −1

2
ω×δφ− 1

2
(δbω + wω)

0 = 0

where the first equation results in the linearized orientation dynamics

˙δφ = −ω×δφ− δbω − wω

and the second equation ensures consistency.
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Foot Position:

The original process model for the time-evolution of the position of the ith foot is

ṗ = CTwp

Again, let C = (I − δφ×)C̄ so that we have CT ≈ C̄T (I + δφ×). Also let p ≈ p̄+ δp
so that

d

dt
(p̄+ δp) = ṗ = C̄T (I + δφ×)wp

Simplifying the above yields

˙̄p+ δ̇p = C̄Twp + C̄T δφ×wp

The second term is the cross product of a state deviation and a (small) noise vector
and thus is neglected. Further, we know that

˙̄p = E[ṗ] = E[CTwp] = E[wp] = 0

since wp is zero-mean and since the rotation matrix C does not alter the statistics
of wp. It directly follows that

δ̇p = C̄Twp
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Accelerometer/Gyroscope Bias:

The original process model for the time-evolution of the accelerometer bias is

ḃf = wbf

Letting bf ≈ b̄f + δbf yields

d

dt
(b̄f + δbf ) = ḃf = wbf

It follows that

˙̄bf + ˙δbf = wbf

However, we know that ˙̄bf = E[ḃf ] = E[wbf ] = 0 since wbf is zero mean and thus

˙δbf = wbf

Likewise, for the gyroscope bias we have

˙δbω = wbω
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Foot Quaternion:

The continuous process model for the time-evolution of the foot quaternion is

ż =
1

2

(
wz

0

)
⊗ z

Let z ≈ δz ⊗ z̄ so that ż = δż ⊗ z̄ + δz ⊗ ˙̄z. Then we have

δż ⊗ z̄ + δz ⊗ ˙̄z =
1

2

(
wz

0

)
⊗ z

However, ˙̄z = 0 is the expected value of ż since E[wz] = 0. We are thus left with

δż ⊗ z̄ =
1

2

(
wz

0

)
⊗ z

Multiplying both sides on the left by z̄−1 and using the fact that δz = z ⊗ z̄−1, we
have

δż =
1

2

(
wz

0

)
⊗ δz

Again, writing the quaternion product as a matrix-vector product leads to(
1
2
δθ̇
0

)
=

1

2

(
−w×z wz

wT
z 0

)(
δθ
0

)
Multiplying out the above yields(

1
2
δθ̇
0

)
=

(
−1

4
w×z δθ + 1

2
wz

1
4
wT

z δθ

)
After eliminating products of small quantities, the first equation yields

δθ̇ = wz

as desired, and the second yields 0 = 0 ensuring consistency.

10



Measurement Model:

Relative Foot Position:

The relative foot position measurement is given by (for a single foot)

sp = C(p− r) + np

Letting sp ≈ s̄p + δsp, C ≈ (I − δφ×)C̄, p ≈ p̄+ δp and r ≈ r̄ + δr we have

s̄p + δsp = sp = (I − δφ×)C̄((p̄+ δp)− (r̄ + δr)) + np

Expanding the above yields

s̄p + δsp = C̄(p̄− r̄) + C̄(δp− δr)− δφ×
(
C̄(p̄− r̄)

)
− δφ×

(
C̄(δp− δr)

)
+ np

Recognizing that s̄p = C̄(p̄− r̄) + np this simplifies to

δsp = C̄(δp− δr)− δφ×
(
C̄(p̄− r̄)

)
− δφ×

(
C̄(δp− δr)

)
The last term above is the cross product of state deviations and is thus neglected.
It follows that, after using the fact that a×b = −b×a, we have

δsp = −C̄δr + C̄δp+
(
C̄(p̄− r̄)

)×
δφ
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Relative Foot Quaternion:

The relative foot quaternion measurement is given by (for a single foot)

sz = nz ⊗ q ⊗ z−1

Letting sz ≈ δsz ⊗ s̄z, q ≈ δq ⊗ q̄ and z ≈ δz ⊗ z̄ we have

δsz ⊗ s̄z = sz = nz ⊗ (δq ⊗ q̄)⊗ (δz ⊗ z̄)−1

After expanding the right hand side and regrouping, we have

δsz ⊗ s̄z = nz ⊗ δq ⊗ (q̄ ⊗ z̄−1)⊗ δz−1

Substituting s̄z = q̄⊗ z̄−1 in the right hand side and multiplying on the right of both
sides by s̄−1z yields

δsz = nz ⊗ δq ⊗
(
s̄z ⊗ δz−1 ⊗ s̄−1z

)
In [?] was shown that a triple product of quaternions can be written as

(
q ⊗ p⊗ q−1

)
=

(
C[q]pv
ps

)
Since δz−1 is the quaternion corresponding to the small rotation −δθ, we have the
approximation

δz−1 ≈
(
−1

2
δθ

1

)
and thus

(
s̄z ⊗ δz−1 ⊗ s̄−1z

)
≈
(
−1

2
C[s̄z]δθ

1

)
Assuming that the rotations corresponding to δsz and nz are small and rewriting the
quaternion products as matrix-vector products yields
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(
1
2
δsz
1

)
=

(
1
2
nz

1

)
⊗
[(
I − 1

2
δφ× 1

2
δφ

−1
2
δφT 1

)(
−1

2
C[s̄z]δθ

1

)]

=

(
1
2
nz

1

)
⊗
(
−1

2
C[s̄z]δθ + 1

4
δφ×C[s̄z]δθ + 1

2
δφ

1
4
δφTC[s̄z]δθ + 1

)

=

(
I − 1

2
n×z

1
2
nz

−1
2
nT
z 1

)(
−1

2
C[s̄z]δθ + 1

4
δφ×C[s̄z]δθ + 1

2
δφ

1
4
δφTC[s̄z]δθ + 1

)

where δsz is the vector corresponding to the measurement quaternion deviation, nz

is the measurement noise vector and δφ is the vector corresponding to the deviation
in the base pose. The expression on the right can be simplified by eliminating terms
involving products of small quantities. This yields

(
1
2
δsz
1

)
=

(
I − 1

2
n×z

1
2
nz

−1
2
nT
z 1

)(
−1

2
C[s̄z]δθ + 1

2
δφ

1

)

=

−1
2
C[s̄z]δθ + 1

2
δφ+ 1

4
n×z C[s̄z]δθ − 1

4
n×z δφ+ 1

2
nz

1
4
nT
z C[s̄z]δθ − 1

4
nT
z δφ+ 1



After again eliminating terms involving products of small quantities and simplify-
ing (using the fact that CT [q] = C[q−1]), the first equation yields the linearized
measurement

δsz = −C[q̄ ⊗ z̄−1]δθ + δφ+ nz

The second equation becomes 1 = 1, ensuring consistency.
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