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Forward

Congratulations! You’ve (somehow) managed to stumble across my vast repository of
knowledge on all sorts of fun and exciting topics somehow related to the work of this
robotics PhD student. This document contains all of my notes since I started my PhD
in 2012. Many portions have come from my study of various internet sources including
others’ personal notes; I found these to be extremely useful in my studies and so decided
to put my notes online as well. Other portions have been transcribed by hand into LaTeX
from texts and interspersed with notes and addendums which (I hope) provide additional
insight or a different interpretation of the material (I’m working on adding references
where applicable). In all cases, I do not profit off of the material found in this document;
it is merely an informal place for me to collect interesting notes and thoughts for later
use. Most of my notes are the product of years of taking courses, reading texts, scouring
the web and spending time working out intuitive explanations for concepts which once
stumped me and putting them into my own words. This document is constantly evolving
and likely contains tons of errors at any given time; in any case, I hope it will be useful
to you, dear reader, in some way.
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Chapter 1

Calculus

1.1 Fundamental Theorem of Calculus

Part 1: The first part of the theorem (sometimes called the first fundamental theorem)
deals with the derivative of a definite integral. Let f be a continuous real-valued function
defined on the interval [a, b]. Let F be the function defined for all x in this interval

F (x) =

∫ x

a
f(t)dt

Then F is continuous on [a, b] and differentiable on (a, b); for all x in (a, b) we have

dF

dt
= f(x)

ie the derivative of the integral is equal to the integrand evaluated at the upper limit.

Part 2: The second part of the theorem (sometimes called the second fundamental
theorem) deals with the evaluation of a definite integral. Let f and F be real-valued
functions defined on [a, b] such that the derivative of F is f . If f is continuous over the
closed interval (or at least Riemann integrable) then∫ b

a
f(x)dx = F (b)− F (a)

1.2 Mean Value Theorem

If a function f is continuous on the (closed) interval [a, b] where a ≤ b and differentiable
on the (open) interval (a, b) then there exists a point c such that

f ′(c) =
f(b)− f(a)

b− a
In other words, there is a point c between a and b such that the tangent at c is equal

to the secant through the endpoints a and b of the interval. [?]

1
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1.3 Taylor Series Expansion

Consider the value of an infinitely differentiable function f(x) in the vicinity of a point x0

(usually taken to be an equilibrium point of the function, ie a point where the derivatives
vanish). For a small deviation (x − x0) about this point, the value of the function can
be expressed as

f(x) =
∞∑
n=0

(x− x0)n
f (n)(x0)

n!

This infinite series the is Taylor Series expansion about the point x0. Defining
h = (x− x0) this expansion is

f(x) = f(x0) + hf(x) + h2 f
′(x)

2!
+ h3 f

′′(x)

3!
+ · · ·

For a function of multiple variables f(x1, x2, · · ·xd) this expansion can also be used.
Consider here the simple case in which the function f(x, y) is expanded about the point
(a, b). Then to first order

f(x, y) ≈ f(a, b) + (x− a)
∂f(a, b)

∂x
+ (y − b)∂f(a, b)

∂y

In general, the multidimensional Taylor Series expansion of f(x) about a point a
(where x is the vector of variables on which the function depends and a is a vector of
the expansion point coordinates) can be expressed compactly as

f(x) = f(a) +Df(a)T (x− a) + (x− a)T
D2f(a)

2!
(x− a) + · · ·

where Df(a) and D2f(a) are the gradient vector and Hessian matrix of the expansion
point vector, respectively.

1.4 Rules of Integration

1) When the variable of integration in a definite integral is changed via a u-substitution,
the limits of the integral must also be changed. Consider for example the integral∫ x2=3

x1=0
2x(x2 + 1)3dx

Letting u = x2+1 we have du = 2xdx and thus dx = du/2x. The limits of integration
become u1 = 02 + 1 = 1 and u2 = 32 + 1 = 10 and thus the integral becomes∫ u2=10

u1

u3du
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2) When the limits of a definite integral are exchanged, the integral is negated. This
is easily seen since∫ b

a
f(x)dx = F (b)− F (a) = −(F (a)− F (b)) = −

∫ a

b
f(x)dx

Integration by Parts

Given an integral involving the product of two functions u(x) and v(x) of the form∫ b

a
u(x)v(x)dx

we may compute the result using integration by parts.
Lemma:
Let u(x), v(x) be continously differentiable (that is, their derivatives are continuous)

functions of x. Then we can compute∫ b

a

d

dx
[u(x)v(x)] dx =

∫ b

a

[
u′(x)v(x) + u(x)v′(x)

]
dx

where the product rule has been used. Using the fundamental theorem of calculus
to simplify the left side and distributing the integral on the right side yields

[u(x)v(x)]ba =

∫ b

a
u′(x)v(x)dx+

∫ b

a
u(x)v′(x)dx

Noting that du(x) = u′(x)dx and dv(x) = v′(x)dx, we may write after rearranging∫
u(x)dv = u(x)v(x)−

∫
v(x)du

Note that there should probably be some magic calculus to make the definite integral
turn into an indefinite integral, but let’s ignore that for now. We illustrate the use of
the above result in the following example.

Example:
Use integration by parts to compute the indefinite integral∫

x cosxdx

First, let u(x) = x and dv(x) = cosxdx so that du(x) = dx and v(x) =
∫

cosxdx =
sinx. Using the result from the lemma, we have

∫
u(x)dv = u(x)v(x)−

∫
v(x)du∫

x cosxdx = x sinx−
∫

sinxdx

= x cosx+ cosx
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The idea behind this method is that u and dv can be chosen such that the integral∫
v(x)du is easier to compute than the original integral.

1.5 Gradients, Jacobians and Hessians

1.5.1 The Gradient

Let f : Rn → R be a scalar-valued function differentiable at a point p. For some vector v,
the gradient is DEFINED AS the vector whose dot product with v yields the directional
derivative in that direction at the point p, ie Dvf = ∇f(p) · v. More generally, let f
be the same scalar-valued function and let σ(t) : I → Rn be a curve parameterized by
t ∈ I where I ⊂ R. If σ(p) = a and σ

′
(p) = v then d

dtf(σ(t))|t=p = df
dσ

dσ
dt = ∇f · v is the

directional derivative of f in the direction v.
Here we define the gradient ∇f in a coordinate-free manner such that it applies to

differentiable manifolds in the general case. However, in cartesian coordinates we define
it explicitly as follows. Let f = f(x1(t), x2(t), · · · , xn(t)) so that

Dvf =
df

dt
=

∂σ

∂x1

dx1

dt
+

∂σ

∂x2

dx2

dt
+ · · ·+ ∂σ

∂xn

dxn
dt

= ∇f · v

where ∇ = ∂
∂x1

+ · · · ∂
∂xn

is the gradient operator and v = dx1
dt + · · · + dx2

dt is the
direction of interest.

1.5.2 The Jacobian

For a vector-valued function f : Rn → Rm, we can break f into m scalar-valued functions
{f1, · · · , fm} and used the above results to define

Dvf = J(f)v

where

J(f) =


∇fT1
∇fT2

...
∇fTm


is the Jacobian of f . In cartesian coordinates, it is the matrix

J(f) =


∂f1

∂x1
· · · ∂f1

∂xm
...

. . .
...

∂fn
∂x1

· · · ∂fn
∂xm

 ∈ Rn×m
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1.5.3 The Hessian

What about second partial derivatives? Again, let f : Rn → R be a scalar valued
function with directional derivative Dvf = ∇f · v = g(v). Note that g, like f , is a
scalar-valued function which we will assume to be differentiable. As above, we define
γ(t) : I → Rn to be a parameterized curve with γ′(p) = v so that the directional
derivative of g at p in the direction of v is given by Dug = ∂g

∂γ
dγ
dt = ∂g

∂γ · v. However,
g = ∇f · u so by the product rule we have

∂g

∂γ
=
∂∇f
∂γ

u+∇f ∂u
∂γ

= ∇ · ∇f · u = ∇2f · u

In cartesian coordinates, since H = ∇2f is a matrix (it is the Jacobian of the
gradient) we can finally write

Duvf = Dug = (∇2f · u) · v = uTHv

We call H ∈ Rn×n the Hessian of f ; it is the symmetric (as long as all second
derivatives of f are continuous) matrix through which we can compute second-order
directional derivatives of f . For example, the quadratic form Duuf = uTHu provides
the second derivative of f in the direction u. If uTHu < 0 for all u then H is negative
definite and hence all second derivatives of f are decreasing, making f a convex function.
The Hessian has the form

H =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


1.6 Data Interpolation

TODO: Come back and flesh out this section. For now, just some notes gleaned from
the Ascher Numerical Methods text to jog my memory when I return here.

The basic idea is that we want to find some function which exactly passes through
a set of points. For now, we consider only polynomials (though there are other choices
of basis functions, of course). For two points, we find a line; for three points, we find a
quadratic function; in general, we can fit N points with a polynomial of order N − 1.
This results in a linear system having N equations and unknowns defined by a so-called
Vandermonde matrix. As long as the x-coordinates of the points are unique, we can
find a UNIQUE interpolating polynomial (this is important). However, this matrix has
a particularly ill-conditioned structure. We can solve a different problem for the same
exact polynomial (remember, it’s unique) by using a different set of polynomials as a
basis - one example is the Lagrange polynomials. These are polynomials of degree N , all
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of which but one vanish at each data point and thus satisfy the interpolation condition.
These are just two ways to solve the same problem.

We can do “better” (among other problems, high order polynomials can oscillate a
lot) by using piecewise interpolants and imposing continuity conditions between succes-
sive approximating functions. For example, the simplest piecewise polynomial interpo-
lation uses linear functions (piecewise linear or “broken line”). There are 2N coefficients
to choose and N interpolation constraints plus N continuity conditions (on the zeroth
derivative) so this can be solved. The problem with piecewise linear is obviously that the
first derivatives are not continuous at the interpolated points. We can use a higher-order
polynomial, for example a cubic, to solve this problem. We then have 4N coefficients
and only 2N constraints. If the first derivative is also specified at each data point, we get
2N more constraints (because the functions preceding and following the point both need
to have the specified derivative at the point and the problem can be solved. The piece-
wise interpolant can be made even smoother by using a fifth-order polynomial (total of
6N variables) and adding 2N more constraints using known accelerations at the points
(note that specifying accelerations using a fourth-order polynomial would result in an
overconstrained system with no exact solution). Since it can be shown from calculus
of variations that a function which has sixth derivative equal to zero (for example, a
fifth order polynomial) minimizes jerk along the trajectory (when starting and ending
at rest?). Thus, using minimum jerk trajectories as interpolants and imposing posi-
tion, velocity and acceleration constraints at the data points leads to a fully-constrained
problem resulting in an interpolating solution which, in some sense, minimizes jerk.

Let’s say you don’t have information about the derivatives of the function at the
data points - then you can instead use “splines,” for example cublic splines. Rather than
forcing derivatives of successive functions at the points to have a pre-specified derivative,
this approach enforces continuity of derivatives between successive pieces. Cubic splines
thus have 4N variables and 4N − 2 constraints (because continuity is enforced only
at interior points) so we additionally need 2 constraints at the endpoints (which can be
specified in a number of ways). Higher-order splines are underdetermined and thus allow
flexibility of the solution/allow enforcing smoothness at higher derivatives.

1.6.1 Interpolating MPC Solutions

Often in robotics we encounter the need to interpolate a discrete-time solution to a model
predictive control (MPC) problem. For example, discrete-time LIPM-based approaches
for center of mass planning involve solving a linear system (or in the case of added
constraints, a QP) for COM jerk which is integrated to determine the center of mass
position, velocity and acceleration. The advantage here is that we can make the timestep
between control points large - on the order of hundreds of milliseconds - so that we can
solve for the optimal motion over a horizon of several steps (usually 1-2 seconds in
length).

In this case, we are solving directly for COM jerk which is piecewise constant at say
0.1s, however we want to control a robot at a timestep of 0.001s. The COM position,
velocity and acceleration output from the MPC are simply the optimal jerk integrated



CHAPTER 1. CALCULUS 7

at the coarser timestep of 0.1s, so it doesn’t actually make sense to try to track these
values.

On the other hand, if we were to integrate the piecewise constant jerk at 0.001s we’d
get something which diverges from the coarse plan and also doesn’t achieve what we
want. What’s the best compromise here? Using cubic splines may work but leaves us
with piecewise linear accelerations. Ideally we’d use quintic splines but then they may
have too much freedom and oscillate (saw this with min jerk trajectories).



Chapter 2

Linear Algebra

2.1 Basic Theory

The theory of this section comes from my informal notes on Gilbert Strang’s excellent
online course1 and associated textbook2; these notes are incomplete but touch on many
elementary concepts in linear algebra and include insights both from the aforementioned
course and from my own experience.

2.1.1 Matrix Multiplication

We can view the matrix-vector product of an m × n matrix A and an n × 1 vector x
to produce an m × 1 vector b (Ax = b) in two ways. The first says that b is a linear
combination of the columns of A; this gives rise to the column view in which we look for
the combination of the columns which produces b. The second says that the components
of b are equal to the dot product of each row of A with x; this gives rise to the row view
in which we look for the intersection of lines (or planes or hyperplanes, depending on
the dimension n).

The matrix-matrix product AB (where A is m×n and B is n× p) can be computed
in a number of ways:

• Each entry abij =
∑

k aikbkj

• Each column of AB is the product of A with each column of B individually

• AB is the sum of n m × p outer products (rank one matrices) formed from the
product of the ith column of A with the ith row of B.

Multiplication can also be done in blocks instead of single entries and the same methods
above apply.

1https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
2http://math.mit.edu/ gs/linearalgebra/

8
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2.1.2 Schwarz Inequality

The dot product (inner product) of two vectors is uT v = ||u||||v|| mod cos(θ). Since
the absolute value of cosine is at most 1, we know that |uT v| <= ||u||||v||.

2.1.3 Triangle Inequality

As for the sides of a triangle, ||u + v|| ≤ ||u|| + ||v||. This comes from the Schwarz
Inequality.

2.1.4 Gaussian Elimination

Gaussian Elimination solves Ax = b directly for x by reducing the system to Ux = c via
elementary row operations. The idea is to clear out entries of A under the diagonal by
adding multiples of higher rows to lower rows, producing (for an invertible matrix) an
upper triangular matrix U . The entries on the diagonal of U are called the pivots.

By augmenting the right hand side b to A as [Ab] and performing elimination on
the augmented matrix, A is reduced to U and b is reduced to c. At this point, back
substitution is used to solve for the components of x (which is the same solution as for
the original system) from the bottom up. Elimination -¿ back substitution.

When A is m × n, U will not be upper triangular but instead will be an Echelon
(staircase) matrix. In these cases A is not invertible and there is not necessarily a
solution to Ax = b (or Ux = c). Note: Elimination works (preserves the solution x to
Ax = b) because these row operations DO NOT ALTER THE ROW SPACE! The rows
of U are linear combinations of the rows of A; x remains in the row space.

2.1.5 LU Decomposition

A can be factored into the product LU which is the result of Guassian Elimination. L
is a lower triangular matrix which records the steps taken in elimination; it has 1s on
its diagonal and its off-diagonal entries are the multipliers used in elimination. U is an
upper triangular matrix which has the pivots on its diagonal.

A is reduced to U through a series of elementary row operations or, equivalently, by
multiplication with a number of elementary matrices which perform these operations. In
the LU decomposition, L is the product of the inverses of these E matrices, in the reverse
order of which they were applied to A. The entries of L are then the multipliers used in
elimination. NOTE: if row exchanges are necessary in elimination then the factorization
is instead PA = LU .

LU Decomposition can also be written in the more symmetric LDU decomposition
form. This is accomplished by dividing the rows of U by the pivots to produce 1s on the
diagonal (like in L) and inserting the matrix D which has the pivots on its diagonal.

For symmetric matrices, the LDU factorization simplifies to A = LDLT . This is
advantageous because then only L and D need to be stored (and can be stored as one
matrix with the 1’s on the diagonal of L replaced with the elements of D).
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LU Decomposition is used to solve Ax = b as follows. First, factor A into L and U
by elimination. Second, solve the intermediate system Lc = b for c (the new right hand
side resulting from elimination) and then finally solve Ux = c for x. The advantage here
is that A only needs to be factored once, after which L and U can be used to solve for
x given any right hand side b. This is much more efficient than performing elimination
on an augmented matrix [Ab] for every new b.

2.1.6 Gauss-Jordan Elimination

We can also use elimination to compute the inverse of A rather than going directly to
x. Just as elimination solved Ax = b for x, it can solve AA−1 = I for A−1. The key is
to solve for one column of the inverse at a time, ie (for a 3× 3 matrix) solve Ax1 = e1,
Ax2 = e2, Ax3 = e3 where the xs are the columns of A−1 and the es are the columns
of the identity. This can be done all at once by augmenting the whole identity onto A
and performing elimination, ie eliminate on [AI]. While Gaussian Elimination would
stop once the matrix is in the upper triangular form U , Gauss-Jordan continues to the
reduced echelon form by then eliminating entries above the pivots by adding lower rows
to those above them and then finally by dividing each row by its pivot. This reduces
[AI] to [IA−1].

2.1.7 Matrix Inverse

A (square eg n× n) matrix is invertible if there exists a matrix A−1 such that A−1A =
AA−1 = I. The inverse only exists if the matrix has full column/row rank, meaning that
elimination results in n pivot columns/rows. Fundamentally, this means that A−1 only
exists when the columns/rows of A are independent and span Rm and Rn respectively.
In this case, it is always possible to solve Ax = b for a particular solution x. In addition,
Ax = 0 has only one solution the zero vector. When A is invertible, Ax = b always has
exactly one solution.

Some quick properties of the inverse:

• The inverse can be calculated using Gauss-Jordan Elimination or Cramers Rule.

• The inverse of a product ABC is C−1B−1A−1.

• The inverse of AT is the transpose of A−1.

• The inverse of a diagonal matrix A (with all nonzero diagonal entries) has 1 divided
by its diagonal entries.

• The inverse of a symmetric matrix is symmetric.

2.1.8 Determinant

A single number which encodes a lot of information about an n× n (square) matrix A.
The determinant of A is 0 when the matrix is singular (has no inverse). This is because
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the determinant is 0 when the matrix has dependent rows/columns which is the case
when the inverse does not exist. There are 3 properties which define the determinant
for any matrix A:

• The determinant of the identity (of any size) is 1.

• The determinant changes sign when two rows are exchanged.

• The determinant is a linear function of each row separately, meaning that multi-
plying a single row by constant t multiplies the determinant by t and adding row
1 of A to row 1 of A (which is the same as A except for a single row) is the sum
of det(A) and det(A).

The above properties, taken together, lead to many others:

• Again, if two rows (or columns, since this always happens together) are equal then
the determinant is 0.

• Elementary row operations which take A to U do NOT change the determinant of
A, provided no row exchanges are needed to get to U . det(A) = +/−det(U) = +/−
product of the pivots.

• A matrix with a row of zeros has 0 determinant.

• If A is triangular then the determinant is the product of its diagonal entries (also
because these are the pivots!)

• The determinant of AB is the product of the determinants of A and B. By this
rule, the determinant of the inverse of A is always 1 divided by the determinant of
A.

• A and AT have the same determinant.

There are 3 ways to compute the determinant:

• The determinant is the product of the pivots of U since det(A) = det(L)det(U)
and det(L) is always 1 (has 1s on its diagonal). If row exchanges were involved in
elimination, then det(P )det(A) = det(L)det(U) and det(A) = +/− the product of
the pivots. Note that the determinant of the upper-left corner submatrix Ak is the
product of the first k pivots. Thus, the kth pivot dk = det(Ak)/det(Ak−1).

• The determinant is a sum of n! terms, each of which comes from a column per-
mutation. det(A) =

∑
det(P )a1ia2ja3k . . . In this formula, sum over all column

permutations and assign each term a sign according to the number of column ex-
changes required to create that permutation. For example, a12a21a33 is multiplied
by −1 since it requires 1 column exchange to restore the column order to 1, 2, 3.
a12a23a31 requires 2 exchanges and is thus multiplied by (−1)2 which is just 1.
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• The determinant is the dot product of any row i of A with its cofactors using other
rows, ie det(A) = ai1Ci1 + ai2Ci2 + . . . + ainCin where each of these cofactors is
Cij = (−1)i+jdet(Mij) and the submatrix Mij throws out row i and column j. This
leads to a recursive definition for computing the determinant of an n×n matrix. A
determinant of order n is a combination of determinants of order n− 1, multiplied
by the as. The determinants of order n − 1 are combinations of determinants of
order n− 2 and so on.

Method 1 is how computers actually find det(A). Method 2 is nice because it gives
an explicit formula. Method 3 is handy when a matrix has many zeros, because then
the as multiplying the cofactors cancel out whole terms in the sum of aCs.

Some quick determinant facts:

• The determinant of A is the area of the parallelogram constructed by the rows of
A. Half of this determinant is the area of the triangle.

• The cross product comes from a special determinant with unit vectors i, j, k in the
first row and two vectors u and v in the second and third rows. It is unique to
vectors of three dimensions! The cross product produces a third vector orthogonal
to u and v. u×v = ||u||||v|| mod sin(θ) whereas the dot product has mod cos(θ).
(u× v) = (v × u) because of a row exchange.

• The scalar triple product (u × v)ẇ is the volume of a box with sides u, v, w. it is
zero when the three vectors lie in the same plane, for a number of reasons.

2.1.9 Cramers Rule

An explicit formula for each component of x (rather than using elimination) can be
found by using Cramers Rule as follows. Take the product of A and a matrix X1 which
is the identity with its first column replaced by x. Then AX1 = B1 where B1 is just
A with its first column replaced by b. det(A)det(X1) = det(B1) but det(X1) is just
x1. Therefore, x1 is det(B1)/det(A). Each component xi of x can be solved for in this
manner by computing xi = det(Bi)/det(A). This process can also (obviously) be used
to solve for each element of A−1. It turns out that A−1 = CT /det(A) where C is the
cofactor matrix containing each cofactor Cij of A. Any one element of A−1 is computed
to be (A−1)ij = Cji/det(A) ¡- note that this has Cji, not Cij !

2.1.10 Permutation Matrix

An m×m permutation matrix P multiplies an m×n matrix A on the left to perform a
row exchange. Multiplying A by P on the right exchanges columns of A. There are m!
of the m×m permutation matrices.

The inverse of P is equal to its transpose. Pre/post multiplying by P−1 = P T brings
the rows/columns of A back into their original order.
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2.1.11 Reduced Row Echelon Form

A matrix R is in reduced row echelon form if its pivots are all 1s and the pivot columns
contain only 0s above and below the pivots. Taken together, the pivot columns contain
the m × m identity (they will be in order though not necessarily adjacent). Just as
reduction takes Ax = b to Ux = c, reduction all the way to R produces the system
Rx = d.

The rref of an invertible matrix is the identity matrix of the same size. The inverse
of A can be found by augmenting [AI] and reducing A to R (which will simultaneously
reduce I to A−1).

2.1.12 Vector Space

A vector space is a set of vectors whose linear combinations ALWAYS remain within the
space. This necessitates the inclusion of the zero vector into any vector space. Vector
spaces include Rn, C (complex), M (space of all n × n matrices), F (space of all real
functions), Z (zero vector only), etc. A vector space is spanned by a basis; the dimension
of a vector space is the number of vectors in every basis.

Note: the solution to Ax = b does NOT constitute a vector space because it does
not include the zero vector! The solutions to Ax = 0 always form a vector space, but
when Ax = b has a solution then this particular solution shifts the space spanned by
the nullspace vectors away from the origin, leaving out the zero vector. (think x =
xp+ c1xn1 + c2xn2 + . . . the constants can be chosen zero but xp will always be nonzero).

2.1.13 Basis

The basis for a vector space is a set of independent vectors which span the space, ie
every vector in the space is a unique linear combination of the basis vectors. There is
only one way to represent each vector in a space using its basis but the basis itself is
not unique. For example, while the standard basis for Rn is comprised of the columns
of the n × n identity matrix, the columns of any n × n invertible matrix (independent
columns!) also span Rn.

The pivot columns of A are a basis of for its column space; the pivot rows of A are
a basis for its row space.

2.1.14 Span

A set of vectors spans a space if their linear combinations fill the space.

2.1.15 Subspace

A subspace is a space within a vector space. The smallest subspace is Z (contains only
the zero vector). Again, all linear combinations of vectors in the subspace remain in the
subspace. If we have a vector space V then the set of vectors S in V spans the subspace
SS which is all linear combinations of the vectors in S.



CHAPTER 2. LINEAR ALGEBRA 14

2.1.16 Orthogonal Subspaces

Two spaces V and W are orthogonal subspaces if every vector in V is orthogonal to
every vector in W .

On a related note, vector space W is the orthogonal complement of a subspace V if
it contains EVERY vector which is orthogonal to V , ie W + V = Rn.

2.1.17 Rank

The rank r of a matrix A is the number of pivot rows/columns in the reduced U or
reduced echelon form R. This results from the fact that the rank gives the true dimension
of the row/column spaces of A it is equal to the number of independent rows/columns.

The rank tells us a lot about the solutions x = xp + xn to Ax = b:

• If r = m = n then A is square and invertible (independent columns). C(A) spans
Rm and thus every right hand side b is in the column space there is a solution xp
for every b. N(A) has dimension 0 and contains only the zero vector. Ax = b has
exactly one solution, the particular solution x = xp.

• If r = m < n (full row rank, A is short and wide) then the column rank is also
r = m and thus C(A) spans Rm (every b is in the column space, so there is always
a particular solution). N(A) has dimension r−m and the same number of special
solutions. Ax = b has infinite solutions (of the form x = xp + c1xn1 + c2xn2 + . . .).

• If r = n < m (full column rank, A is tall and thin) then C(A) only spans a subspace
of Rm and thus there is not necessarily a solution for the given b (it must lie in
the subspace spanned by the columns for their to be a particular solution). N(A)
has dimension 0 since the columns are independent and thus there are no special
solutions. Ax = b has either one solution (x = xp) or 0 solutions. In this case we
can solve for a least-squares (approximate) solution.

• If r < m and r < n then there are always solutions to Ax = 0 but only some-
times for Ax = b. By augmenting a generic vector b to matrix A and performing
reduction, we can find the conditions which the components of b must satisfy in
order for there to be a solution. Ax = b has either zero solutions (we must resort
to least-squares) or infinite solutions (of the form x = xp + c1xn1 + c2xn2 + . . .).

Note that a column vector a times a row vector aT always produces a rank one matrix
A = aaT .

2.1.18 Column Space

The column space C(A) of A is the subspace of Rm spanned by the columns of A. It
contains all linear combinations Ax = b. If b is not in C(A) then there cannot be a
solution x to Ax = b. For example, the column space of a 3×2 matrix with independent
columns is a plane in R3 (careful: it is NOT the space R2) The column space of an n×n
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matrix with independent columns is all of Rn. The column space has dimension rank r,
the same as the dimension of the row space.

2.1.19 Nullspace

The nullspace N(A) of A is the subspace of Rn spanned by all vectors x for which
Ax = 0. N(A) is spanned by n − r independent vectors (where r is the rank of the
matrix) and thus dim(N(A)) = n− r. This reflects the fact that the nullspace and the
row space are orthogonal complements (their dimensions must add to n).

In order to Ax = 0 to have nonzero solutions (x 6= 0), the columns of A must be
dependent. A (square) invertible matrix always has independent columns and thus its
nullspace is only the vector x = 0. A noninvertible square matrix will have nonzero x in
its nullspace, however. An m×n matrix with n > m will always have nonzero solutions
to Ax = 0 because its rank is at most m (and thus n − m special solutions); this is
because there are more vectors than needed to span Rm so they cannot possibly all be
independent. On the other hand, an m× n matrix with m > n has rank at most r = n;
Ax = 0 has either zero or infinite solutions (the columns of A are not dependent by
default as in the other case).

The solutions to this equation are called the special solutions and can be found as
follows. Reduce A to U (or even further to R since elimination does not change the basis
for N(A)) and choose the components of x multiplying each column of A as follows. For
each of the n − r special solutions, choose the component of x which multiplies one of
the free (pivotless) columns to be 1 and the components which multiply the other free
columns to be zero. Solve for the components of x multiplying the pivot columns. The
special solutions go into the columns of the n× n− r nullspace matrix N for which AN
equals the m×n−r matrix of zeros. In practice, the nullspace is usually found through a
decomposition method (for example QR or SVD) for which there are efficient numerical
implementations.

2.1.20 Row Space

The row space C(AT ) is same as the column space of AT it is the subspace of Rn

spanned by the rows of A. The row space and the nullspace are orthogonal complements
(the dot product of each row of A with any x in N(A) yields 0). The pivot rows of A
and U and R constitute a basis for the row space (elimination does NOT change the row
space or the nullspace!)

Particular solutions xp to Ax = b are in the row space; this is evident because the
dot product of xp with each row of A produces a nonzero component of b.

2.1.21 Left Nullspace

The left nullspace N(AT ) is the nullspace of AT , ie all vectors x for which ATx = 0 or
equivalently xTA = 0T . N(AT ) is a subspace of Rm and has dimension m − r. This
reflects the fact that the column space and the left nullspace are orthogonal complements.
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The last m− r rows/columns of the identity constitute a basis for N(RT ) since the last
m− r rows of R are always all zero. The last m− r rows/columns of E (the elimination
matrix which reduces A to R) constitute a basis for N(AT ).

The left nullspace is important for projections and especially for least squares ap-
proximations (we require the projection error to be in the left nullspace of A, which is
the matrix whose columns are the vectors which span the lower-dimensional space).

2.1.22 Fundamental Theorem of Linear Algebra/The Four Subspaces

The following theory summarizes the previous sections and comprises the Fundamental
Theorem of Linear Algebra by relating the four subspaces - column space, row space,
nullspace and left nullspace:

• C(A) and C(AT ) both have dimension r. The nullspaces N(A) and N(AT ) have
dimensions n− r and m− r respectively.

• N(A) is the orthogonal complement of the row space C(AT ) in Rn−r and N(AT )
is the orthogonal complement of the column space C(A) in Rm.

Since C(AT ) and N(A) are complements, every solution x can be split into a row space
component xr (xp, particular solution) and a nullspace component xn. When A mul-
tiplies x = xr + xn, the nullspace component goes to zero since Axn = 0 and the row
space component goes to the column space since Axr = Ax = b.

2.1.23 Projections

The projection p of a vector b onto a subspace spanned by the columns of a matrix A
is the portion of b which lies along the vectors which span that subspace. The matrix
which achieves this projection is P such that p = Pb.

For projection onto a line in the direction of a vector a, we seek the closest point on
the line to the original vector b. This is p = ta where t is some scalar. The key is that
the error b − p should be orthogonal to the vector a. We thus require aT (b − p) = 0
and with p = ta this leads to t = aT b/aTa. The projection is then p = ta and the
projection matrix which satisfies p = Pb is P = aaT /aTa. If a is a unit vector ie
||a|| = ||a||2 = aTa = 1 then the denominator, which is a normalization term, goes to
one and P = aaT .

2.1.24 Least Squares

Least squares is the process of projecting a vector b onto a subspace spanned by the
columns of a matrix A. We wish to find a vector x which combines the columns of
A such that Ax = p approximates b in the lower-dimensional subspace with error e =
b − p = b − Ax. Each component of x gives the projection onto each column of A; we
choose these vectors such that the error in the approximation is orthogonal to each of
the vectors which span the subspace (the columns of A). These conditions are called
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the Normal Equations (we choose the projection such that the error is normal to the
subspace). In this way, we do the best job we can of approximating b; the error represents
information about b which we cannot capture using the given subspace. Combining the
Normal Equations into a single matrix equation yields AT (b− Ax) = 0. This of course
leads to the solution x = (ATA)−1AT b. The projection p is then equal to Ax and
the projection matrix P is P = (ATA)−1AT . In practice we compute the so-called
pseudoinverse (ATA)−1AT via other methods because solving the Normal Equations
directly can have numerical stability issues.

Another way to view these conditions is that we require the error to be in the left
nullspace of A. Since this subspace of Rm is the orthogonal complement of the column
space of A, we are choosing the combination of the columns which produces the best
approximation of b all the error is in the orthogonal space, so we have represented b
as best as possible using the given information! The picture of the spaces shows that
b is outside the column space, so no vector x in the row space can produce it. This is
because b = p+ e, where p is the projection (which is in the column space) and e is the
error (which is in the left nullspace). The nullspace is the zero vector here because the
columns of A are independent.

When A is an orthogonal matrix Q, the solution drastically simplifies to x = QT b,
p = Qx and P = QQT . This is due to the fact that ATA (again a normalization term)
turns into QTQ which is just I (since the columns are orthonormal, or orthogonal and
normalized). This coupling or correlation matrix is the identity, meaning that there
is no interdependence among different directions! The projection p is then the sum of
one-dimensional projections onto the columns of Q. No inverses to worry about just
a bunch of dot products. Further, when Q is square then the subspace is the whole
space and b is projected into itself, but because Q is orthogonal this actually breaks b
into orthogonal pieces! This is the foundation of Fourier and other transforms. We can
throw away pieces as we wish to get coarser and coarser approximations to b. We can
do something similar with other decompositions like the SVD.

2.1.25 Orthogonal Matrix

A square matrix Q is orthogonal when QT = Q−1, which results from the fact that
the columns of Q are orthonormal (each is normal and orthogonal to all others). All
matrices Q with orthonormal columns satisfy QTQ = I (square or rectangular) but we
only give the name orthogonal to square Q.

2.1.26 Gram-Schmidt

We can produce an orthogonal (or, even better, orthonormal) basis for a subspace from
any set of vectors which span the space. The Gram-Schmidt Process is as follows:

• Begin with the first vector v1 in the set (order doesnt actually matter). This vector,
unchanged, will be the first vector in the new basis.
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• Take the second vector v2 and subtract from it its projection along the first vector
in the new basis. Whats left is the component of v2 which is orthogonal to v1 (the
information about v2 which v1 couldnt capture). This is the second vector in the
new basis.

• Take the third vector v3 and subtract from it its projections along the first two vec-
tors in the new basis (not the original first two vectors). The remaining component
is the third vector in the new basis.

• Continue this process for all n vectors.

• Finally, to make the basis orthonormal, divide each new basis vector by its length.

2.1.27 QR Decomposition

A matrix A whose columns are the basis for a subspace can be factored into A = QR,
where Q is an orthonormal basis and R is a triangular matrix which produces this basis.
This is the matrix form of Gram-Schmidt. This is easily seen by writing out the equations
for the orthonormal basis vectors and solving them for the original basis vectors of A.

Assuming A ∈ Rm×n with m > n and full column rank n, the so-called “full” QR
decomposition results in Q ∈ Rm×m and R ∈ Rm×n.

Here, the first n columns of Q form an orthonormal basis Q1 for the column space
R(A) and the remaining m − n columns form an orthonormal basis Q2 for the left
nullspace N(AT ). Q is orthogonal and thus QTQ = QQT = I.

The first n rows and columns of the matrix R form an upper-triangular matrix which
describes the steps taken to transform the basis given by the original columns of A into
the orthogonal basis given by the columns of Q1. The remaining m − n rows of R are
zero.

The factorization can thus be written in block form as

A =
(
Q1 Q2

)(R1

0

)
We thus have that A = Q1R1; this is the “economy” factorization. Note that in

this case Q1 is not orthogonal but QT1 Q1 = I. The fact that the basis for N(AT ) gets
multiplied by a matrix of zeros underlies the fact that the matrix A does not specify a
basis for the nullspace - we can choose any basis, even an orthonormal one if we’d like!

We can solve the Least Squares problem using A = QR; it has the solution x =
R−1QT b. In practice, Rx = QT b is solved for x by back substitution which is very fast.

2.1.28 Eigenvalues/Eigenvectors

Eigenvalues λ and eigenvectors x for a particular square matrix A solve the equation
Ax = λx. That is, when certain vectors called eigenvectors are multiplied by A, they
remain in the same direction and are simply scaled by their corresponding eigenvalue.
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These eigenvalue/vector pairs can be solved for as follows. First, move the right side
over to produce Ax− λx = 0. Factoring out x yields (A− λI)x = 0. We are interested
in finding nonzero vectors x which satisfy this equation; thus, we look for values of λ
where the matrix in parentheses becomes singular ie vectors in the nullspace of (A−λI)
(otherwise it is invertible and its nullspace is just the zero vector!) We thus require
det(A − λI) = 0 which results in a polynomial in λ (called the characteristic equation
or characteristic polynomial) whose roots are the eigenvalues of A. We then substitute
each λ (one at a time) into (A−λI)x = 0 and solve for the corresponding eigenvector x.

Some important properties of the eigenvalues:

• The product of the eigenvalues is equal to the determinant of the matrix (and thus
to the product of the pivots), ie

∏
i λi = det(A)

• The sum of the eigenvalues is equal to the sum of the diagonal entries of the matrix
(the trace of A), ie sumiλi = tr(A)

• The number of positive eigenvalues is equal to the number of positive pivots - this
is important in determining stability in controls, for example.

• The eigenvalues of A + B and AB are only α + β and αβ (respectively) if A and
B share the corresponding eigenvector x. Matrices which commute (AB = BA)
share the same eigenvector matrix.

• The n × n identity matrix has all its n eigenvalues equal to 1 and has all vectors
as its eigenvectors. Thus we have that the eigenvalues of A + kI are each the
eigenvalues of A plus k.

To solve for eigenvalues, we are essentially shifting the original matrix in order to make
it singular; if A was singular to start then we know that (at least) one of its eigenvalues
is zero. In fact, a singular matrix has n− r of its eigenvalues equal to zero; these are the
same special solutions which span the nullspace. In general (not just for λ = 0) a matrix
can have repeated eigenvalues; the number of times an eigenvalue is repeated is called
its algebraic multiplicity (AM). The number of independent eigenvectors corresponding
to that eigenvalue is called its geometric multiplicity (GM). GM ≤ AM always!

The importance of eigenvalues/vectors is that they lead to a factorization which turns
A into a diagonal matrix. This eigendecomposition results in Λ = S−1AS where S is the
eigenvector matrix whose columns are the eigenvectors of A and Λ is the diagonal matrix
of eigenvalues. Written as a decomposition of A, we have A = SΛS−1. This means that
A can be written as the sum of n rank-one matrices, the ith of which is λixix

T
i the

eigenvalues/vectors essentially allow us to decouple different dimensions of A. Note that
A can only be diagonalized to Λ when there are n independent eigenvectors (GM = 1
for every eigenvalue). Otherwise, S has no inverse because it has dependent columns
(dependent eigenvectors).

Note that a matrix can have repeated eigenvalues with independent eigenvectors this
is fine, we can still diagonalize. We can multiply eigenvectors by any nonzero constants
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without changing the solutions to Ax = λx, meaning that we can fill S with unit
eigenvectors just as well.

The eigendecomposition allows for computation of the powers of a matrix easily the
kth power of A is simply Ak = SΛkS−1. This is important in the solution of difference
equations of the form uk+1 = Auk. The factorization also leads to the matrix exponential
eAt = SeΛtS−1 which is important in the solution of systems of coupled linear, first order,
ordinary, constant coefficient differential equations of the form du/du = Au. Note that
any second (or higher) order equation can be broken into a coupled system of first order
equations.

Solving Systems of Equations using the Eigendecomposition

The solution to the difference equation uk+1 = Auk involves powers of A. This equation
starts from an initial vector u0 and evolves with iterations. The solution using the
power of matrix A is uk = Aku0 = SΛkS−1u0. However, its insightful to also express
the solution as uk = c1λ

k
1x1 + . . .+ cnλ

kxn as follows. First, find the eigenvalues λ and
the eigenvectors x of A. Next, find c1, . . . , cn which express the initial vector as a linear
combination of the eigenvectors u0 = c1x1 + . . .+ cnxn. Finally, multiply each term by
λk corresponding to each eigenvector to find uk. The idea here is that we can break the
solution down into a combination of the eigenvectors since these vectors do not change
for powers of A (they are simply multiplied by the corresponding eigenvalue each time
A is applied). We thus follow each component individually and take their combination
to form uk.

Differential equations of the form du/dt = λu have solutions of the form u(t) = Ceλt.
Since we are working with a system of differential equations of this form combined into
du/dt = Au, we have n pure exponential solutions of the form u = xeλt. When substi-
tuted into du/du = Au, this reduces to Ax = λx so were working with eigenvectors/val-
ues again. Solution works in the same way as for difference equations: find the constants
that produce u(0) from the eigenvectors and solve for u(t) = c1x1e

λ1t + . . . + cnxne
λt.

We also have the solution u(t) = u(0)eAt where the matrix exponential is defined using
the infinite series definition of ex and is seen to factor into eAt = SeΛtS−1. eAt always
has its inverse e−At, its eigenvalues are always eλt and when A is skew-symmetric eAt is
orthogonal so its inverse=transpose.

2.1.29 Similarity Transformations

The eigendecomposition of a matrix A resulting in Λ = S−1AS is one of infinite possible
similarity transformations (albeit a very special one, since it diagonalizes A). Formally,
two matrices A and B are similar if B = P−1AP for some invertible matrix P . This is
nothing more than a representation of the matrix A in a new basis defined by P (just
as the eigendecomposition represents a matrix in the basis of its eigenvectors, where its
action is solely scaling in independent dimensions).

Since similar matrices represent the same linear transformation in different bases,
they share fundamental properties including characteristic polynomial, rank, determi-



CHAPTER 2. LINEAR ALGEBRA 21

nant, trace, eigenvalues (along with their algebraic multiplicies) and geometric multi-
plicities (but not eigenvectors themselves, which are also transformed according to P ).

2.1.30 Singular Value Decomposition

Recall that square matrices with independent eigenvectors can be diagonalized as A =
SΛS−1 or, for symmetric matrices, A = QΛQT . The concept of eigenvectors and eigen-
values is restricted to such square, invertible matrices. However, the Singular Value
Decomposition allows us to diagonalize any matrix A ∈ Rm×n having rank r using not
one basis S or Q but two bases U and V . This factorization is then

A = UΣV T

where U ∈ Rnxr and V ∈ Rmxr each have orthonormal columns and Σ ∈ Rr×r is the
diagonal matrix of singular values of A.

Forming ATA using the SVD reveals that

ATA = V ΣTUTUΣV T = V ΣTΣV T

which, since ATA is symmetric, means the right singular vectors (columns of V ) are
the eigenvectors of ATA and the singular values are the square roots of the eigenvlaues
of ATA.

One can thus compute the SVD by forming ATA and AAT and computing the
corresponding eigenvectors/eigenvalues. Alternatively, since the vectors in U and V are
related through the singular values, one can find the vectors of one matrix directly from
those of the other. Note that U and V are conventionally constructed such that the
singular values down the diagonal of Σ are ordered from greatest to least (this specifies
how to arrange the vectors in these matrices since in theory there is no “correct” way
to order the eigenvectors - this convention is just most useful).

Forming AAT (also symmetric) similarly results in

AAT = UΣΣTUT

so the left singular vectors (columns of U) are the eigenvectors of AAT and the
singular values are also the square roots of the eigenvalues of AAT .

The above form of the SVD is often referred to as the “economy-size” SVD. Just as
we had the “full” QR decomposition which added to the matrix Q an orthonormal basis
for the left nullspace, we have the “full” SVD which adds to U an orthonormal basis for
the left nullspace N(AT ) and adds to V an orthonormal basis for the nullspace N(A).
We thus have the same factorization

A = UΣV T

where U ∈ Rnxn and V ∈ Rmxm together specify orthonormal bases for all four
fundamental subspaces and Σ ∈ Rm×n has gained an additional m − r rows and n − r
columns of zeros. The full SVD is still computed from the eigendecompositions of ATA
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and AAT but one additionally needs to find bases for the nullspaces in order to make U
and V square. The way the SVD represents the four subspaces can be seen as follows.
Since V TV = I we can write

AV = UΣ

which makes it clear that the vectors in V belong to the row space R(AT ) and
nullspace N(A) of A (since AV is composed from inner products between the rows of A
and the columns of V , and since the last n − r colums of UΣ are zero). Likewise, the
vectors in U belong to the column space R(A) and left nullspace N(AT ) of A as can
been seen in the same way by writing

UTA = ΣV T → ATU = V Σ

We have r of each of these vectors and thus (since the rank of the matrix is equal to
the dimensionality of both row and column space) the matrices U and V must specify
orthonormal bases for these spaces!

The SVD is a product of investigating the eigenproblem for ATA (or AAT ). We have

ATAvi = σ2
i vi

where we define vi to already be normalized such that the eigenvectors are unit
vectors. Multiplying both sides by vTi yields

vTi A
TAvi = σ2

i v
T
i vi

(Avi)
T (Avi) = σ2

i

||Avi||22 = σ2
i

which implies that ||Avi||2 = σi.
Multiplying both sides of the eigenvalue equation for ATA instead by A yields

A(ATAvi) = σ2
iAvi

(AAT )Avi = σ2
iAvi

AAT (Avi) = σ2
i (Avi)

and thus ui = Avi
||Avi||2 = Avi

σi
is a unit eigenvector of AAT .

Note that A can also be written in terms of r rank one projections as

A = u1σ1v
T
1 + u2σ2v

T
2 + · · ·urσrvTr

using the SVD. Note that the sum of r rank one matrices is a matrix with rank r. An
application such as image compression thus simply expresses the image as a matrix and
approximates it using the n rank one matrices corresponding to the n largest singular
values. This is then the best rank n approximation to the original image.
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2.2 Complex Linear Algebra

The following sections introduce a number of concepts in linear algebra in complex
space, denoted C (as opposed to linear algebra on the space of real numbers, R). This
information (and many other concepts in this chapter) mostly comes from the text Matrix
Analysis by Horn and Johnson as well as Jason Fulman’s Applied Matrix Analysis course
at USC.

2.2.1 Complex Inner Product Spaces

Let V be a complex inner product space. For u, v ∈ V we define an inner product (u, v)
on V such that

1. (u, v) = ¯(v, u)

2. (u, u) ≥ 0 with (u, u) = 0↔ u = 0

3. (αu+ βv,w) = α(u,w) + β(v, w) for w ∈ V and α, β ∈ C

With V = Cn the inner product becomes

(u, v) =

n∑
i=1

uiv̄i

Theorem: Cauchy-Schwartz Inequality:
If u, v ∈ V then

|(u, v)| ≤ ||u||||v||

When V = Rn this is clear since (u, v) = ||u||||v|| cos θ.
Theorem: If V is a finite-dimensional inner product space and W is a subspace of

V , then V = W +W⊥.
V is thus the direct sum of W and W⊥, ie there is a unique way to write any v ∈ V

as a linear combination of vectors in W and W⊥.
Remarks: We work over the field F = C because C is algebraically closed, ie all

polynomials having coefficients in C have their roots in C.

2.2.2 Unitary Transformations

Definition: A linear map T : V → V over the complex field is unitary if (Tu, Tv) =
(u, v) for all u, v.

A unitary transformation preserves the complex inner products and hence preserves
length. In addition, the converse is true: if (Tv, Tv) = (v, v) for all v then T is unitary.

Theorem: A linear map is unitary iff it takes an orthonormal bases of V to another
orthonormal basis of V ; this is proven as follows.
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Proof. → First, suppose that T is unitary and let {v1, . . . , vn} be an orthonormal basis
of V . Since T is unitary, we have (Tvi, T vj) = (vi, vj) = δij for all i, j which is also an
orthonormal basis of V .
← Now, suppose that both {v1, . . . , vn} and {Tv1, . . . , T vn} are orthonormal bases of

V and u,w ∈ V . Then we can use this basis to write u =
∑n

i=1 αivi and w =
∑n

i=1 βivi
where αi, βi ∈ C for all i. Since the vi’s are orthonormal, we have

(u,w) =
n∑
i=1

αiβ̄i

Also, by linearity of T , we have

Tu =
n∑
i=1

αiTvi, Tw =
n∑
i=1

βiTvi

Since the Tvi’s are orthonormal, we have

(Tu, Tw) =

n∑
i=1

αiβ̄i

so (Tu, Tw) = (u,w) for all u,w ∈ V and hence T is unitary.

Definition: if T : V → V is linear, define the hermitian adjoint of T written T ∗ by
(Tu, v) = (u, T ∗v).

Lemma: If T : V → V is linear, so is T ∗ and the hermitian adjoint has the following
properties.

1. (T ∗)∗ = T

2. (S + T )∗ = S∗ + T ∗

3. (λS)∗ = λ̄S∗

4. (ST )∗ = T ∗S∗

Proof. To show that T ∗ is linear if T is linear, we must show that T ∗(v+w) = T ∗v+T ∗w
and T ∗(λv) = λT ∗v.

If u, v, w ∈ V then

(u, T ∗(v + w)) = (Tu, v + w)

= (Tu, v) + (Tu,w)

= (u, T ∗v) + (u, T ∗w)

= (u, T ∗v + T ∗w)
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Since this hold for all u we must have T ∗(v + w) = T ∗v + T ∗w.
Similarly, for λ ∈ C we have (u, T ∗(λv)) = (Tu, λv) = λ̄(Tu, v) = λ̄(u, T ∗v) =

(u, λT ∗v). Since this holds for all u we must have T ∗(λv) = λT ∗v. Thus, T ∗ is linear if
T is linear.

Also, to show that (T ∗)∗ = T we write (u, (T ∗)∗) = (T ∗u, v) = ¯(v, T ∗u) = ¯(Tv, u) =
(u, Tv). Since this holds for all u, we must have (T ∗)∗ = T .

Lemma: T is unitary iff T ∗T = 1 (the identity map, since we’re working in a
coordinate-free way thus far).

Proof. → First, assume T is unitary and compute (u, T ∗Tv) = (Tu, Tv) = (u, v). Since
this holds for all u, T ∗T = 1.
← Now, assume that T ∗T = 1. Then (u, v) = (u, (T ∗T )v) = (Tu, Tv) by the

definition of the hermitian adjoint. Since this holds for all u, v we have that T must be
unitary.

We now seek to assign a basis to T and determine how T ∗ is represented in this basis.
Theorem: If {v1, . . . , vn} is an orthonormal basis of V and linear map T in this

basis is represented by the matrix [αij ], then the matrix of T ∗ in this basis is [βij ] where
βij = ᾱji. That is, the matrix representing T ∗ is the conjugate transpose of the matrix
representing T in the basis.

Proof. Since the matrices of T and T ∗ in the given basis are [αij ] and [βij ], we have

Tvi =

n∑
k=1

αkivk, T ∗vi =

n∑
k=1

βkivk

Since the vi’s are orthonormal, we have

βji = (T ∗vi, vj) = (vi, T vj) = (vi,
n∑
k=1

αkivk) = ᾱij

Thus the matrix representing T ∗ in orthonormal basis V is the conjugate transpose
of the matrix representing T in that basis.

Proposition: If U, V ∈Mn are unitary, then UV is also unitary.

Proof. We have (UV )(UV )∗ = UV V ∗U∗ = I since U and V are unitary; thus, UV must
be unitary.

The set of unitary matrices forms a group together with the binary operation of
matrix multiplication. Recall that a group is a set rogether with a binary operation which
satisfies closure, associativity, identity and inverse. The product of two unitary matrices
is unitary from the above proposition, guaranteeing closure; matrix multiplication is
associative; the identity matrix is unitary; the inverse of any unitary matrix exists and
is its conjugate transpose.
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Since U∗U = UU∗ = I, every column of U has Euclidean norm one and hence no
entry of U may have absolute value greater than one. In addition, we know that the
eigenvalues of U must have absolute value one. The unitary group is thus said to be
bounded, and it can be shown that it is also closed since the limit matrix of an infinite
sequence of unitary matrices is unitary. Since the group is both closed and bounded, it
is compact.

2.2.3 Unitary Similarity

Let U ∈ Mn be a unitary matrix and A ∈ Mn by any square complex matrix. Since
U∗ = U−1, B = U∗AU is a similarity transformation; we say that A is unitarily similar
to B.

Theorem: Let U, V ∈Mn be unitary, let A,B ∈Mm,n and suppose that A = UBV .
Then we have

∑n
i,j=1 |bij |2 =

∑n
i,j |aij |2. In particular, this is satisfied if m = n and

V = U∗ - that is, if A is unitarily similar to B.

Proof. Since trA∗A =
∑n

i,j=1 |aij |2, we check that trA∗A = trB∗B. Compute trA∗A =
tr(UBV )∗(UBV ) = tr(V ∗B∗U∗UBV ) = trV ∗B∗BV = trB∗BV V ∗ = trB∗B

Theorem (Schur Factorization): Let A ∈ Mn have eigenvalues λ1, . . . , λn and
let v ∈ Cn be the unit eigenvector corresponding to λ1. There exists a unitary U =
[v, u2, · · · , un] ∈ Mn such that U∗AU = T = [tij ] is upper triangular with diagonal
entries tii = λi, i = 1, . . . , n.

Proof. Let U1 = [v, u2, · · · , un] be any unitary matrix whose first column is the unit
eigenvector v. Then

U∗1AU1 = U∗1 [Av,Au2, · · · , Aun] = U∗1 [λ1v,Au2, · · · , Aun]

=

 v
∗

u∗2
...u∗n

 [λ1v Au2 · · · Aun
]

=


λ1v
∗v v∗Au2 · · · v∗Aun

λ1u
∗
2v

... A1

λ1u
∗
nv

 =

[
λ1 ∗
0 A1

]

because v∗v = 1 and the columns of U1 are orthonormal. We haveA1 = [u∗iAuj ]
n
i,j=2 ∈

Mn−1 which has eigenvalues λ2, . . . , λn (why?). If n = 2 then A has been triangular-
ized. If not, let w ∈ Cn−1 be an eigenvector of A1 associated with λ2 and perform the
preceding reduction on A1 by choosing U2 ∈Mn−1 to be any unitary matrix whose first
column is w. Thus,

U∗2A1U2 =

[
λ2 ∗
0 A2

]
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Thus, we let V2 = 1⊕ U2 and compute the unitary similarity

(U1V2)∗AU1V2 = V ∗2 U
∗
1AU1V2 =

λ1 ∗ ∗
0 λ2 ∗
0 0 A2


where A2 ∈ Mn−2 has eigenvalues λ3, . . . , λn. Continue this reduction to produce

unitary matrices Ui ∈ Mn−i+1, i = 1, . . . , n − 1 and Vi ∈ Mn, i = 2, . . . , n − 2. The
matrix U = U1V2V3 · · ·Vn−2 is unitary and thus U∗AU is upper triangular from the
process above.

Remarks: Note that if A ∈Mn(R) has only real eigenvalues, the above triangular-
ization can be performed using orthogonal matrices.

Definition: A family of matrices F ⊆ Mn is a nonempty finite or infinite set of
matrices. A commuting family is a family of matrices in which every pair of matrices
commutes.

Definition: For a given A ∈ Mn, a subspace W ⊆ Cn is A-invariant if Aw ∈ W
for all w ∈ W . For a given family F ⊆ Mn, a subspace W ⊆ Cn is F-invariant if W is
A-invariant for all A ∈ F .

Definition: A subspace W ⊆ Cn is reducible if some nontrivial (W 6= {0},W 6= Cn)
subspace of Cn is F-invariant; otherwise, it is irreducible.

Observation: Let A ∈Mn with n ≥ 2 and suppose that W ⊆ Cn is a k-dimensional
subspace with 1 < k < n. If W is a nonzero A-invariant subspace, then some vector in
W is an eigenvector of A.

Proof. Choose a basis s1, . . . , sk for W and let S1 = [s1 · · · sk]. Choose any sk+1, . . . , sn
such that s1, . . . , sn is a basis for Cn and let S2 = [sk+1 · · · sn]. Let S = [S1S2] and note
that this matrix has linearly independent columns and thus is nonsingular.

If the subspace W is A-invariant, then Asi ∈ W for each i = 1, . . . , k which means
that (since S1 is a basis for W ) each Asi is a linear combination of s1, . . . , sk. We may
thus write AS1 = S1B for some B ∈Mk. Now, let λ be an eigenvalue of B and let ξ ∈ Ck
be the corresponding eigenvector. Then S1ξ ∈W (and is nonzero because S1 has rank k)
since S1 is a basis for the subspace W . But A(S1ξ) = (AS1)ξ = S1Bξ = S1(λξ) = λ(S1x)
and thus A must have an eigenvector in W .

Lemma: Let F ⊂ Mn be a commuting family. Then some nonzero vector in Cn is
an eigenvector of every A ∈ F .

Proof. First, note that while it is trivial, there is always a nonzero F-invariant subspace
of Cn - that is, Cn itself. Let m be the minimum dimension of all nonzero F-invariant
subspaces of Cn.

Theorem: Let F ⊆ Mn be a nonempty commuting family. Then there exists a
unitary U ∈Mn such that U∗AU is upper triangular for all A ∈ F .
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Proof. We know that for a commuting family F there is some nonzero vector in Cn

which is an eigenvector of every A ∈ F . Thus, we perform the above triangularization
by choosing at each step and eigenvector which is common to the commuting matrices.
An outline of the process is as follows.

First, choose some v which is a (unit) eigenvector of every A ∈ F and construct the
unitary matrix U1. Compute U∗1AU1 as above to obtain the matrix A2 ∈ Mn−1; since
U∗1AU1 is block triangular and since similarity preserves commutativity, A2 commutes
with all matrices of this form produced by reducing some A ∈ F as described above.
Thus, there is a unit eigenvector common to all A2 which can be chosen to produce U2

and so on. Continuing in this manner produces a U which simultaneously triangularizes
all A ∈ F .

2.2.4 Hermitian Transformations

Definition: A linear transformation T is hermitian or self-adjoint if T ∗ = T . Similarly,
a transformation is skew-hermitian if T ∗ = −T .

Theorem: Any linear map S : V → V can be written in the form S = A+ iB where
A =

(
S+S∗

2

)
is hermitian and B =

(
S−S∗

2

)
is skew hermitian. This is called the Toeplitz

Decomposition.
Theorem: If T is hermitian, all its eigenvalues are real.

Proof. Let λ be an eigenvalue of T . Then there exists a vector v 6= 0 such that Tv = λv.
Compute:

λ(v, v) = (λv, v) = (Tv, v) = (v, T ∗v) = (v, Tv) = (v, λv) = λ̄(v, v)

Since (v, v) 6= 0, we have λ = λ̄ which implies that λ must be real.

Theorem: If T is unitary and λ is an eigenvalue of T , then |λ| = 1.

Proof. Let v be an eigenvector of T associated with the eigenvalue λ. Then

(v, v) = (Tv, Tv) = (λv, λv) = λλ̄(v, v)

Since (v, v) 6= 0, we have λλ̄ = |λ|2 = 1 and thus |λ| = 1.

2.2.5 Normal Linear Transformations

Definition: A linear map T is normal if TT ∗ = T ∗T . That is, the matrix representing a
normal transformation commutes with its conjugate transpose. Unitary, hermitian and
skew-hermitian transformations are normal.

Theorem: Let N : V → V be a normal linear map. Then there exists an orthonor-
mal basis consisting of the eigenvectors of N in which N is diagonal. Equivalently, there
exists a unitary matrix U such that U∗NU is diagonal, that is, N is unitarily similar to
a diagonal matrix.

Proposition: A normal matrix N is:
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1. Hermitian iff all its eigenvalues are real.

2. Unitary iff all its eigenvalues have absolute value one.

Proof. 1. → If N is hermitian, all its eigenvalues must be real as shown earlier.
← Assume that N is normal and all its eigenvalues are real. Thus, there exists a

unitary U such that D = U∗NU is diagonal with real entries. it follows that

U∗NU = D = D∗ = U∗N∗U

Thus, N = N∗ and N must be hermitian.
2. → If N is unitary, all its eigenvalues have absolute value one as shown earlier.
← Assume that N is normal and all its eigenvalues have absolute value one. Thus,

there exists a unitary U such that D = U∗NU is diagonal. Since D∗ = U∗N∗U , we have

D∗D = (U∗N∗U)(U∗NU) = U∗N∗NU = I

since D is the diagonal matrix of eigenvalues of N . This implies that N∗N = NN∗ =
I and thus N must be unitary.

Definition: If T : V → V is hermitian and (Tv, v) ≥ 0 for all v ∈ V , T is called
nonnegative and it is written T � 0. If T is hermitian and (Tv, v) > 0 for all v ∈ V , T
is called positive and it is written T � 0.

Proposition: A hermitian linear map is:

1. Nonnegative iff all its eigenvalues are nonnegative.

2. Positive iff all its eigenvalues are strictly positive.

Proof. → Suppose that T � 0 and let λ be the eigenvalue of T corresponding to eigen-
vector v 6= 0. Thus,

(Tv, v) = (λv, v) = λ(v, v) ≥ 0

and since (v, v) > 0, we must have λ ≥ 0.
← Now, assume that the hermitian map has nonnegative eigenvalues. Since T is

hermitian, it can be written in terms of an orthonormal basis of eigenvectors {v1, . . . , vn}.
Given any v ∈ V , we may thus write v in this basis as

v =

n∑
i=1

αivi

Thus, Tv =
∑n

i=1 αiTvi =
∑n

i=1 αiλivi and we compute

(Tv, v) =

(
n∑
i=1

αiλivi,

n∑
i=1

αivi

)
=

n∑
i=1

λiαiᾱi =

n∑
i=1

λi|αi|2

Since λi ≥ 0 and |αi|2 ≥ 0 for all i, we conclude that (Tv, v) ≥ 0 for any v ∈ V and
thus T � 0.
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Proposition: A linear map T : V → V is nonnegative iff there exists some matrix
A such that T = AA∗.

Proof. ← Assume that there exists some A such that T = AA∗. Clearly, T is hermitian
since T ∗ = (AA∗)∗ = AA∗ = T . Thus, for any v ∈ V we have (AA∗v, v) = (A∗v,A∗v) =
(Av,Av) = ||Av||2 ≥ 0 and thus T must be nonnegative.
→ Now, assume that T is nonnegative. Then there exists a unitary U such that D =

U∗TU is diagonal with nonzero values equal to the eigenvalues of T . Since the eigenvalues
of T are nonnegative, we may define D1/2 = diag{

√
λ1, . . . ,

√
λn} and A = UD1/2U∗.

We thus have T = AA∗ = (UD1/2U∗)(U(D1/2)∗U∗) = U(D1/2)2U∗ = UDU∗.

Remarks: Over the field of real numbers, unitary matrices are called orthogonal
and hermitian matrices are called symmetric. Many of the above properties apply to the
real cases, as orthogonal matrices are unitary and symmetric matrices are hermitian.

2.3 Nearest Orthogonal Matrix

Let R ∈ R3×3 and let Q ∈ O(3) be an orthogonal matrix. We wish to find the orthogonal
matrix Q closest to R in terms of the Frobenius norm, ie

Q = arg min
Q∈O(3)

||Q−R||2F = tr[(Q−R)T (Q−R)]

This reduces to

tr[(Q−R)T (Q−R)] = tr[QTQ−QTR−RTQ+RTR]

= tr[QTQ]− 2tr[QTR] + tr[RTR]

= 3− 2tr[QTR] + tr[RTR]

since tr[A] = tr[AT ] and QTQ = I. It follows that in order to minimize the given
function, we must minimize the second term in the final expression above. The problem
thus becomes

Q = arg max
Q∈O(3)

tr[QTR]

We can use the SVD to write R = UΣV T so that tr[QTR] = tr[QTUΣV T ] =
tr[V T (QTΣV T )V ] = tr[V TQTUΣ] since similarity transformations preserve the trace.
Defining the orthogonal matrix Z = V TQTU , we may write

tr[QTR] = tr[ZΣ] =
3∑
i=1

ziiσi ≤
3∑
i=1

σi

where the inequality follows from the fact that zii ≤ 1∀i = 1, 2, 3 since the rows of
Z are orthonormal. It follows that the new cost function is maximized when Z = I
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and hence Q = UV T . Note that this analysis holds for the nearest unitary matrix to
produce, analogously, Q = UV ∗

2.4 Damped Least Squares

Recall that the damped least squares solution to the linear system Ax = b is

xDLS = (ATA+ λ2I)−1AT b = AT (AAT + λ2I)−1b

This is known to be a reliable solution for underdetermined problems with poor
condition (ie, singular values close to zero) - but why? The SVD of the matrix AT (AAT +
λ2I)−1 is

AT (AAT + λ2I) = (UDV T )T ((UDV T )(UDV T )T + λ2I)−1

= V DTUT (UDDTUT + λ2UUT )−1

= V DTUT (U(DDT + λ2I)UT )−1

= V DTUTU(DDT + λ2I)−1UT

= V DT (DDT + λ2I)−1UT

= V EUT

where E = DT (DDT + λ2I)−1 is the diagonal matrix whose entries are

ei,i =
σi

σ2
i + λ2

Thus, when σi >> λ the damped least squares solution is approximately equal to
the pseudoinverse (SVD) solution; on the other hand, when σi is close to zero then the
damped least squares solution prevents the pseudoinverse from ”blowing up” in these
directions. Effectively, this is like a ”smooth” cutoff of the rank-deficient directions
(rather than a hard threshold, which would normally be used).

2.5 Principal Component Analysis (PCA)

Let x̃i ∈ Rm be a training sample and let µi be its corresponding mean. The covariance
of n training samples is defined to be

Σ =

n∑
i=1

(x̃i − µi)(x̃i − µi)T

Let xi = x̃− µi be the ith centered training sample and let

X = [x1 · · ·xn]
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be the design matrix of training data points. Then we may write Σ = XXT where
the normalization term 1

n has been dropped for simplicity.
Consider computing the covariance matrix of the projection of this dataset onto

a k-dimensional subspace spanned by {u1, u2, . . . uk}. For an arbitrary subspace we
know that the projection of xi onto U = [u1 · · ·uk] is given by x̂i = (UTU)−1UTxi
and so the design matrix of the data represented in the new basis is X̂ = [x̂1 · · · x̂n] =
(UTU)−1UT [x1 · · ·xn] = (UTU)−1UTX. It follows that the covariance matrix is

ΣU = X̂X̂T

= ((UTU)−1UTX)((UTU)−1UTX)T

= (UTU)−1UTXXTU(UTU)−T

In the case that the ui are an orthonormal basis, we have simply ΣU = UTXXTU .
Consider computing the variance of the projection of the data onto a single dimension

specified by the unit vector u
||u|| . In this case we have

σu =
uTXXTu

uTu

The quadratic form involving Σ = XXT thus gives the variance of the data along
any dimension! Further, we recognize this as a Rayleigh form; it can be shown that the
maximum variance is given by the largest eigenvalue of Σ and that this occurs when u
is equal to the corresponding eigenvector (since the eigenvectors of a symmetric matrix
are orthogonal, we can simply choose these as the principal component directions and
be done).

We thus choose the first principal component v0 to be the eigenvector correspond-
ing to the largest eigenvalue. We proceed to choose the remaining principal directions
recursively as

vk = arg max
||u||=1

uTXkX
T
k u

where

Xk = (Xk−1 −
k−1∑
j=1

vjv
T
j Xk−1)

is the matrix of data points minus their projection onto the components which were
already selected, ie the matrix of residuals after the k − 1 projection step. Intuitively,
we wish to choose the next principal direction to maximize the variance of what’s left
after the previous projections. Consider the case k = 1; we see that
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Σ1 = X1X
T
1

= (X − v0v
T
0 X)(X − v0v

T
0 X)T

= (X − v0v
T
0 X)(XT −XT v0v

T
0 )

= XXT −XXT v0v
T
0 + v0v

T
0 XX

T − v0v
T
0 XX

T v0v
T
0

= XXT − 2XXT v0v
T
0 + v0v

T
0 XX

T v0v
T
0

= XXT − 2λ1v0v
T
0 + λ1v0v

T
0 v0v

T
0

= XXT − λ1v0v
T
0

=
m∑
i=1

λiqiq
T
i − λ1q1q

T
1

=
m∑
i=2

λiqiq
T
i

where λi is the eigenvalue corresponding to the ith largest eigenvector qi of Σ1. We
know that maximizing uTΣ1u amounts to choosing the largest eigenvector of Σ1 - which
is simply the second largest eigenvector of Σ according to the above. We can see that,
in general, vk should be chosen as the eigenvector corresponding to the k + 1 largest
eigenvalue of Σ.

This implies that PCA reduces to nothing more than the eigendecomposition of the
data covariance matrix XXT or, equivalently, the Singular Value Decomposition (SVD)
of X. Of course, PCA (and these equivalent decompositions) are applicable only to data
points which exist in Euclidean space; it is not obvious how to generalize the notions of
statistics and projections to the manifold setting.

2.6 Cholesky Decomposition

Let A ∈ Rn×n be a symmetric (in general, Hermitian), positive definite or semi-definite
matrix. Since A is square, it can be decomposed (under certain conditions and ignoring
permutations) as A = LU ; however, since A = AT we have

UTLT = AT = A = LU

which implies that U = L and hence A = LLT . This is known as the Cholesky
decomposition. It is implied that this factorization is only valid for positive-definite and
positive semi-definite A since xTAx = xTLLTx = ||LTx||2 ≥ 0. When A is semi-definite,
however, the factorization may not exist.

Note that we can also write this as A = LDLT where L is again lower triangular but
with diagonal entries equal to one and D is the diagonal matrix of the eigenvalues of A.
While the Cholesky decomposition is valid only for positive semi-definite matrices (since
it involves square roots of the eigenvalues of A which would cause the result to otherwise
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be complex), the so-called symmetric indefinite factorization A = LDLT avoids taking
square roots and is thus valid for any square matrix.

The matrix L in the Cholesky factorization is lower triangular and a matrix square
root A1/2 of A. The square root of a matrix is not unique; for example, for some
positive-definite A we have the spectral factorization (in this case the SED or symmetric
eigenvalue decomposition) A = QΛQT and thus can define A1/2 = QΛ1/2QT .

2.6.1 Generating samples from a multivariate Gaussian

Consider a matrix X ∈ Rm×n composed of n mean-centered data samples each of
dimension m (each column is a sample). We know that the covariance matrix of
these samples is given by Σ = XXT . Now, suppose that the points are indepen-
dent and identically distributed according to a standard normal distribution so that
Σ = I. Now, let P be an arbitrary covariance matrix and L its matrix square root.
Then we can correlate the sample according to P by transforming X̃ = LX so that
Σ̃ = X̃X̃T = (LX)(LX)T = LXXTLT = LLT = P . Similarly, if X has covariance
P then X̃ = L−1X has covariance I - in other words, L−1 uncorrelates the data sam-
ples. The matrix L is any square root, but it is often computationally advantageous
to choose the Cholesky factor. This is used for generating normally distributed data
with a particular covariance matrix in MATLAB. It’s also the basis for generating a
set of ”sigma points” which capture the mean and covariance of a distribution in an
Unscented Kalman Filter - the 2n sigma points are chosen as the UKF mean plus/minus
the columns of the matrix

√
nP which guarantees that their mean is the UKF mean and

their covariance matrix is Σ = 1
n(
√
nP )(

√
nP )T =

√
P
√
P
T

= P as desired. This is not
the only way to choose the sigma points so that they capture the mean and covariance of
the filter (the matrix square root is not unique) but it has been shown to be the ”best.”

2.7 Statistical Significance

2.7.1 Mahalanobis Distance

The Mahalanobis distance measures the distance between a point x and a distribution
parameterized by mean µ and covariance matrix Σ. This can be used, for example, to
determine whether or not x belongs to the set described by the distribution.

In a single dimension, we would intuitively measure the distance of x from the dis-
tribution by computing how many standard deviations x lies from the mean µ. That
is,

d(x) =
x− µ
σ

The Mahalanobis distance generalizes this concept to higher dimensions; it is com-
puted as

d(x) =
√

(x− µ)TΣ−1(x− µ)
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Suppose we have a multivariate Gaussian distribution D with zero mean and the
covariance matrix Σ = diag(2, 5). This implies that the data in the y-direction is spread
out more than the data in the x-direction. Accordingly, the distance of a point from the
distribution should take this into account. By computing distance with respect to Σ−1,
we weight distance according to the spread of the data; the more spread in a direction,
the less the distance. The Mahalanobis distance thus accounts for this effect.

Note that we can define a general distance metric between any two points x, y ∼ D
as

d(x, y) =
√

(x− y)TΣ−1(x− y)

2.7.2 Chi-squared Distribution

The Chi-squared distribution (abbreviated χ2 or χ2
k to denote k degrees of freedom)

is the distribution of a sum of the squares of k independent standard normal random
variables.

That is, given Z1, . . . , Zk independent standard normal random variables (random
variables each drawn from an independent 1-D Gaussian distribution having zero mean
and unit variance) then

Q =
k∑
i=1

Z2
i ∼ χ2

k

or in other words Q is Chi-squared distributed.

Relatonship between Chi-squared distribution and Mahalanobis distance

In the case of a multivariate normal distribution, the covariance matrix Σ is simply
the identity. Then the squared distance of a point to the mean (which is zero) is χ2-
distributed.

For a general multivariate Gaussian disribution D ∼ {µ,Σ}, we know that we can
uncorrelate a point x drawn from D by transforming it as x̄ = L−1x where L is computed
from the Cholesky decomposition Σ = LLT . It follows that z = L−1(x − µ) is a vector
of independent standard normal random variables and thus

zT z = (x− µ)TL−TL−1(x− µ) = (x− µ)TΣ−1(x− µ)

is χ2-distributed. This is also the squared Mahalanobis distance of x from D, imply-
ing that for a general multivariate Gaussian distribution the χ2 distribution is nothing
more than the distribution over squared Mahalanobis distances.

The Chi-squared distribution allows us to determine the likelihood of data by using its
cumulative distribution function (CDF). This is related to the p-value used in statistics.

Why not simply use the CDF of the multivariate Gaussian distribution itself in order
to compute likelihood? The problem is that this CDF has no closed-form expression.
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However, we know that the PDF is monotonically-decreasing with respect to the Maha-
lanobis distance, allowing us to instead compute the probability that a point falls inside
the ellipsoid determined by the Mahalanobis distance. This is χ2-distributed and hence
has a closed-form CDF.

Kalman Filter Validation Gates

A validation gate is a method for determining whether a measurement in a Kalman
Filter (here an EKF) agrees with the assumed measurement model (and thus whether
it contains useful information and should be used for an update).

The idea is simple: compute the Mahalanobis distance of the innovations vk+1 of the
current measurement with respect to the covariance of the innovations Sk+1. That is,

e2 = vTk+1S
−1
k+1vk+1

where vk+1 = zk+1 − ẑk+1 and Sk+1 = Hk+1Pk+1H
T
k+1 + Rk+1. Since we know that

this distance e2 is a squared Malahanobis distance and is thus χ2-distributed, we can
set a confidence level and reject any measurement for which e2 ≥ g2 where g2 is looked
up using the χ2 CDF and chosen confidence level.

Alternatively, if our measurements come from sensors prone to modes of failure which
we know how to model, then we can use a similar method both to detect failure and
switch measurement models. This is done by computing the squared Mahalanobis dis-
tance as above for all measurement models corresponding to all possible modes of failure
and choosing the model with the smallest distance. In this way, we can continue to use
the measurements rather than rejecting them. This could be useful, for example, if a
GPS receiver fails in such a way that it continues to report correct positions but with
much more noise; the measurements remain useful but their statistical properties have
changed.

2.8 Skew-Symmetric Matrices

The quadratic form of a skew-symmetric matrix is

xTAx = −xTATx = −(xTAx)T = −xTAx

since the transpose of a number is just itself. In order for

xTAx = −xTAx

to hold, we must have xTAx = 0.

2.9 Positive Definiteness

Theorem: For any positive-definite matrix M and invertible Q, the forms QTMQ and
Q−1MQ are also positive-definite.
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Proof. Since M is positive-definite, it admits a Cholesky factorization of the form M =
RTR where R is upper-triangular. We thus have QTMQ = QTRTRQ. For any x, we can
thus write xTQTMQx = xTQTRTQRx = (QRx)T (QRx) = ||QRx||2 ≥ 0 with equality
iff x = 0.

2.10 Cayley-Hamilton Theorem

Let A be an n×n matrix and let p(λ) = det (λI −A) denote the characteristic polynomial
of A. Then p(A) = 0.

This can be proven easily for the specific case in which A is diagonalizable, though
the general case holds for all such matrices.

Using this assumption, A can be diagonalized as

A = SDS−1

where S is an invertible matrix and D is the diagonal matrix

D =


λ1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 λn


The kth power of D is then given by

Dk =


λk1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 λkn


which implies that

p(D) =


p(λ1) 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 p(λn)


Each of these numbers λj is an eigenvalue of A which implies that p(λj) = 0 for

j = 1, · · · , n; thus, p(D) = 0.
Since A = SDS−1 implies Ak = SDkS−1 for all k we therefore have p(A)A =

Sp(D)S−1. Since p(D) = 0, we must have p(A) = 0.
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2.10.1 Cayley-Hamilton Theorem (General Proof)

Recall that a vector x is an eigenvector of A corresponding to the eigenvalue s if

Ax = sx

This leads to the equation

(sI −A)x = 0

where Φ(s) = (sI −A)−1 is the resolvent.
Obviously this holds for any value of s with the vector x = 0 but this is uninteresting;

an eigenvector is defined as a vector which, when acted upon by A is only scaled (does
not change direction). We therefore first solve for eigenvalues by requiring x 6= 0; this
implies that the resolvent does not exist - in other words, det(sI − A) must be zero
(otherwise only the zero vector would lie in its nullspace).

Expanding this determinant yields the characteristic polynomial

D(s) = |sI −A| = sn + a1s
n−1 + · · ·+ an−1s+ an

which is an nth degree polynomial in s having coefficients [1, a2, . . . , an] which are each
functions of the elements of A. To verify that D(s) must have degree n, note that one
term is the product of the diagonal elements of (sI−A), ie (s−a11)(s−a22) · · · (s−ann);
this is clearly a polynomial of degree n with the coefficient of sn being unity. Further,
every other term will involve at most n − 1 diagonal elements and will thus have, at
most, degree n− 1.

The characteristic equation of A is then defined to be

D(s) = |sI −A| = sn + a1s
n−1 + · · ·+ an−1s+ an

This is an equation with n roots which correspond to the eigenvalues of the system.
Note that from Cramer’s rule the inverse of any matrix - here (sI − A) - can be

written as

Φ(s) = (sI −A)−1 =
adj(sI −A)

|sI −A
where adj(sI − A) denotes the adjoint matrix of A. Each element of this matrix

corresponds to the determinant of a submatrix of A having one row and one column
removed; thus, the adjoint can be written as a matrix polynomial of the form

adj(sI −A) = E1s
n−1 + E2s

n−2 + · · ·+ En

since each of its elements is a characteristic polynomial of order n− 1 corresponding
to a submatrix of A. Note that since the adjoint is n× n each matrix Ei is also n× n.
We can then write

adj(sI −A) = (sI −A)−1|sI −A| = E1s
n−1 + E2s

n−2 + · · ·+ En
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from Cramer’s rule. multiplying both sides by (sI −A) yields

|sI −A| = (sI −A)(E1s
n−1 + E2s

n−2 + · · ·+ En)

Substituting the characteristic polynomial on the left hand side and expanding the
multiplication on the right hand side produces

snI+a1s
n−1I+ · · ·+an−1sI+anI = E1s

n+(E2−AE1)sn−1 + · · ·+(En−AEn−1)s−AEn
Equating powers of s on either side yields the following set of equations which can be

solved recursively for the coefficient matrices composing the adjoint given the coefficients
ai of the characteristic polynomial.

E1 = I

E2 −AE1 = a1I

E3 −AE2 = a2I

...

En −AEn−1 = an−1I

−AEn = anI

Thi is not our purpose here, though. Instead we write in order

E2 = AE1 + a1I = AI + a1I = A+ a1I

E3 = AE2 + a2I = A2 + a1A+ a2I

E4 = AE3 + a3I = A3 + a1A
2 + a2A+ a3I

...

En = An−1 + a1A
n−2 + · · ·+ an−1I

Multiplying the last equation by A yields

AEn = An + a1A
n−1 + · · ·+ an−1A

but from before we have −AEn = anI. Thus,

−anI = An + a1A
n−1 + · · ·+ an−1A

and hence

An + a1A
n−1 + · · ·+ an−1A+ anI = 0

The result is the characteristic equation of A with powers of A substituted for pow-
ers of s; this is the Cayley-Hamilton theorem which essentially says that every matrix
satisfies its own characteristic equation.
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2.11 Quadratic Forms, Norms, and Singular Values

2.11.1 Vector Norms

The p-norm of a vector x ∈ Rn is defined to be

||x||p = (

n∑
i=1

|xi|p)1/p

For p = 2, this is the familiar Euclidean norm ||x||2 =
√
xTx. We may visualize these

norms by considering the shapes of regions of constant norm. For p = 1, this region is
a diamond; for p = 2 it is a circle. For p > 2 the shape approaches a square as p→∞.
Thus, the p =∞ norm is defined to be

||x||∞ = maxi|xi|

2.11.2 Matrix Norms

How can we measure the “size” of a matrix? Since matrices represent linear transforma-
tions which act on vectors, we can define the norm of a matrix by its action on a vector.
For any A ∈ Cm×n we thus define the induced p-norm to be

||A||p = maxx 6=0
||Ax||p
||x||p

= max||x||p=1||Axp||

where the two definitions above are equivalent. It can be shown that:
For p = 1, the norm is equal to the maximum of the column sums, ie

||A||1 = max1≤j≤n

m∑
i=1

|aij |

For p = 2, the norm is equal to the maximum singular value of A (maximum eigen-
value of ATA), ie

||A||2 = λmax(ATA)

For p =∞, the norm is equal to the maximum of the row sums, ie

||A||1 = max1≤i≤m

n∑
i=1

|aij |

2.11.3 Quadratic Forms

The following expression

q =
n∑
i=1

n∑
j=1

aijxixj
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is known as a quadratic form; in matrix notation this is

q = xTAx

It is important to note that the matrix A corresponding to q is not unique since the
coefficient of the product xixj is (aij + aji); any matrix Ā with (āij + āji) = (aij + aji)
will produce the same quadratic form q. The quadratic form is therefore specific to
symmetric matrices as this guarantees uniqueness.

Consider the transformation of variables

x = Ty

The quadratic form can be expressed in terms of this transformation as

q = xTAx = yTT TATy = yTBy

where B = T TAT ; this is known as a congruence transformation (A and B are
congruent matrices). Such a transformation can always be found for a real, symmetric
matrix A which diagonalizes A such that B = Λ = T TAT is diagonal. In this case T is
the orthogonal matrix or the eigenvectors of A and Λ has the (all real) eigenvalues of A
on its diagonal. The quadratic form thus becomes

q = yTΛy =
(
y1 · · · yn

)

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


y1

...
yn


Thus the quadratic form is

q = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n

2.12 Condition Number

First, the sub-ordinate matrix norm (in general) is defined as

||A|| = max
||x||6=0

||Ax||
||x||

= max
||x||=1

||Ax||

The condition number of a matrix A is given by

κ(A) = ||A||||A−1||

and is derived is as follows. Consider the linear system

Ax = b
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The condition number describes how much the solution x changes due to a pertur-
bation in the values in b. Thus, also consider the perturbed system

Ax̃ = b+ δb

The magnitude of the absolute error in x is therefore given by

||x̃− x|| = ||A−1δb|| ≤ ||A−1||||δb||
Also, since ||b|| = ||Ax|| ≤ ||A||||x|| for any x (by definition of the matrix norm) then

1

||x||
≤ ||A||
||b||

Therefore, the relative change in the solution is

||x̃− x||
||x||

≤ ||A||||A−1|| ||δb||
||b||

We thus find that the relative change in x is at most κ(A) = ||A||||A−1|| times the
relative change in b.

If the chosen norm ||A|| denotes the 2-norm of the matrix A, then ||A||2 is computed
as follows.

||A||2 = max
||x||=1

[
(Ax)T (Ax)

] 1
2 = max

||x||=1

[
xTATAx

] 1
2 = max

||x||=1

[
λATAx

Tx
] 1

2 = max
i

√
λATA,i

2.13 Least Squares and Related Decompositions

2.13.1 Normal Equations

The first solution comes directly from forming the normal equations in their matrix-
vector form

ATAx = AT b

and solving for x using Gaussian Elimination via the MATLAB command x NE =
(A′ ∗ A)\(A′ ∗ b). Since the columns of A are constructed to be linearly independent,
this solution is unique.

If the matrix A is rank-deficient (has dependent columns) or if n > m then ATA is
singular and the normal equations break down. In this case the system ius underdeter-
mined - there exist an infinite number of solutions which minimize the squared 2-norm
of the residual.

In this case, one must further constrain the problem. This is commonly done by
seeking the solution which both minimizes the residual and has the smallest 2-norm
||x||2. This solution is computed using the (right??) pseudoinverse to be

x = AT (AAT )−1b
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2.13.2 QR Decomposition

Consider the same linear system written in terms of the “full” QR factorization:

QRx = b

Using the fact that QTQ = I we have the system Rx = QT b. We note that the
the first n components of the vector QT b are the projection of b onto the orthonormal
basis for the column space; the last m− n components are the projection of b onto the
orthonormal basis of the left nullspace. It thus follows that

Rx = QT b =

(
c
d

)
where c is the right hand side corresponding to the least-squares system R1x = c

and d is the residual! Note that d is the residual expressed in terms of the orthonormal
basis Q2; it is not the same residual as for the original system (which is r = b−Ax) but
it does have the same magnitude.

Recall the formulation of the least squares solution for an overdetermined system.
We sought the solution which minimized the L2 norm of the residual r = b− Ax or, in
terms of geometry, sent the residual to the left nullspace N(AT ) to achieve an orthogonal
projection into the column space R(A). This is precisely what multiplying b by QT does!
The vector c corresponds to the portion of b which lies in the transformed column space
of A; we need only use R1 to bring the solution back into the original (non-orthonormal)
basis of A.

Since R1 is upper-triangular, R1x = c is solved easily via backsubstitution. The
solution x can thus be solved for using the command x QR = R 1\(Q 1′ ∗ b).

Note that, in general, the QR decomposition is not unique; there are an infinite
number of orthonormal bases which can be chosen to compose Q. If A is square and
invertible then enforcing rii > 0 in R guarantees uniqueness and if A is rectangular with
full rank then enforcing rii > 0 in R1 guarantees uniqueness.

The full QR decomposition is performed in MATLAB using Householder transfor-
mations (reflections) of the form

H = I − 2
uuT

uTu

Applying H to any vector x reflects the vector about the plane defined by the chosen
normal u.

Note that H is both symmetric and orthonormal so H−1 = HT = H and thus
HTH = H2 = I.

The goal of using such reflection matrices to perform QR decomposition is to reduce,
one column at a time, the matrix A to the upper-triangular matrix R.

Note that, since H is orthogonal, ||Hx||22 = xTHTHx = xTx = ||x||22. Thus we can
only use such matrices to transform a vector into another vector of the same length!
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MATLAB Solution

The MATLAB solution to any linear system Ax = b is computed using the command
x MAT = A\b. If A is invertible, the solution is directly computed using Gaussian
Elimination. If A is rectangular with m > n, however, then MATLAB first performs
QR factorization and then uses this to compute the least-squares solution as was done
to compute x QR.

2.13.3 Singular Value Decomposition

The pseudoinverse can be formed from the SVD and used to solve least-squares problems
as

x = A†b = V Σ−1UT b

This solution x SV D is defined for any matrix A; when m > n and rank(A) = n, it
identical (from a theoretical standpoint) to the other least-squares solutions described
above. From a numerical standpoint, however, the SVD solution is the most stable of
all solutions.

2.14 Conjugate Gradient Method

Again we wish to solve Ax = b where A ∈ Rn×n is symmetric and positive-definite; the
conjugate gradient method achieves this by expressing the solution in terms of a basis
of conjugate directions. Two vectors u and v are said to be conjugate (with respect to
A) if

uTAv = 0

This defines an inner product with respect to A which can be written as 〈u, v〉A. It’s
clear that if u is conjugate to v then v is conjugate to u since

〈u, v〉A = uTAv = vTATu = vTAu = 〈v, u〉A
Suppose we (somehow) find a set of mutually conjugate vectors {p1, . . . , pn}; these

form a basis for Rn so we can express the solution to Ax = b as

x∗ =
n∑
i=1

αipi

We can thus write
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Ax∗ =
n∑
i=1

αiApi

pTkAx
∗ =

n∑
i=1

αip
T
kApi

pTk b = αkp
T
kApk

and thus we can solve for αk for any k = 1, . . . , n as

αk =
pTk b

pTkApk

The use of the conjugate gradient method as a direct method for solving Ax = b
as shown above is not particularly advantageous over other methods; its real use is as
an iterative method. Because of the way in which the basis is chosen (formed from
conjugate directions), we can actually get away with using only a few of these directions
to approximate the solution. This is especially useful for solving large linear systems
approximately.

The iterative method proceeds in a fashion similar to Gram-Schmidt orthogonal-
ization; we can consider the conjugate gradient method as being similar to using an
orthogonal basis to solve the problem (for example QR decomposition-based methods)
however the use of conjugacy with respect to A rather than plain orthogonality means
the chosen basis is “better” and leads to much faster convergence.

This method is called the conjugate gradient method because the iterative solution
chooses the first basis vector as the gradient and chooses the remainder to be conjugate
with respect to A.

The method can be applied to nonlinear systems as well for which the gradient is
available (numerically or analytically).

2.15 Underdetermined Systems

Consider the linear system

Ax = b

where A ∈ Rm×n has n > m and is full rank; that is, there are more unknowns than
equations. In this case the columns of A span all of Rn; there is no left nullspace N(AT )
and thus there must exist a solution to the system.

There is, however, a nullspace N(A) with dimension n−m and thus infinite solutions
of the form x = xp +

∑n−m
i cixni exist where the ci’s are arbitrary constants (since

solutions in the nullspace do not affect the solution to the system). Any of these solutions
will do, but for a particular application it may be desirable to shape the solution in some
way be exploiting this redundancy in the solution.



CHAPTER 2. LINEAR ALGEBRA 46

In many applications, the most suitable solution is that with the minimum norm
||x||2 of all solutions. This solution must be x = xp, otherwise we could simply add
solutions from the nullspace to grow the norm without affecting the product Ax. We
thus desire the unique solution x which lies entirely in the row space (has no component
in the nullspace).

One method of obtaining this solution while simultaneously guaranteeing good nu-
merical properties is through the use of QR decomposition.

We know that QR decomposition for an overdetermined system with full column
rank (A ∈ Rm×n, r = n) provides us with orthonormal bases for the column space R(A)
and left nullspace N(AT ) of A. This means that the QR decomposition of the transpose
of an underdetermined system with full row rank (A ∈ Rm×n, r = m) provides us with
orthonormal bases for the other two subspaces - the row space R(AT ) and the nullspace
N(A). Thus,

AT = QR =
(
Q1 Q2

)(R1

0

)
where Q1 ∈ Rn×n is the basis for R(AT ), Q2 ∈ Rn×n−m is the basis for N(A) and

R1 ∈ Rm×m is the upper triangular matrix used to orthogonalize AT . We then have
A = RTQT and thus the system Ax = b becomes

(
RT1 0

)(QT1 x
QT2 x

)
= b

It’s clear from the above expression that the solution vector can be broken into two
components - one which is a projection onto the row space and the other which is a
projection onto the nullspace. As discussed above, we want the solution to lie entirely in
the row space - this means that the projection QT2 x onto the nullspace should be zero.
We therefore have the system

RT1 Q
T
1 x = b

for which the solution is the desired minimum norm solution. We define z = QT1 x
and solve first RT1 z = b by forward substitution (RT1 is lower triangular) and then solve
for x as x = Q1z.

Note that the pseudoinverse from the SVD also produces the minimum norm solution
in such a case.

2.16 Projections Onto Subspaces

Formally, we define a (linear, orthogonal) projection on a finite-dimensional vector space
W to be the operator P : W → U where U and V are the range and kernel of P ,
respectively.

Properties of this projection are as follows:
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• First, P is idempotent (P k = P for any k ≥ 1) - in other words, projecting more
than once does not change the result.

• Second, P is the identity operator on U , ie Px = x∀x ∈ U - this follows from
idempotence.

• Additionally, we have that W = U ⊕ V where ⊕ denotes the direct sum - this
means that any vector x ∈W can be decomposed as x = u+ v where u = Px and
v = x− Px = (I − P )x.

From the last point, we have that P projects onto the subspace U and Q = (I − P )
projects onto the orthogonal complement of U , here V . This will come in handy later.

Now, let A be a matrix onto the columns of which we wish to project a vector b. This
is precisely the problem least-squares solves. Recall that the general solution is b̂ = Pb
where P = A(ATA)−1AT ; we can easily verify that P 2 = A(ATA)−1ATA(ATA)−1AT =
A(ATA)−1AT so P is idempotent. Keep in mind that this formula is derived with respect
to the standard 2-norm - if we have chosen a weighted norm such as ||x||W =

√
xTWx

then we would recover the weighted least-squares solution.
Anyway, the point is that the least-squares solution is just a projection. Now, let’s

assume A is a matrix composed of orthonormal basis vectors (such that ATA = I).
Then clearly the projection reduces to P = AAT . The term (ATA)−1 in the general
least-squares solution is a sort of “normalization factor.”

Let’s return to the fact that (I −P ) projects onto the orthogonal complement of the
subspace spanned by projection P . This shows up in solving underdetermined systems,
ie

Ax = b

where A ∈ Rm×n has n > m and is full rank; that is, there are more unknowns than
equations, leading to infinite solutions. We can decompose the general solution to the
problem as

x = Pb+ (I − P )b

where P is an orthonormal basis for the row space and (I −P ) an orthonormal basis
for the nullspace of A. We can find these in infinite ways, but once choice is to use the
SVD. Recall from A = UΣV T that V holds an orthonormal basis for the row space and
its orthogonal complement, the nullspace. We have that

x = A†b+ (I −A†A)b0

where A† = V Σ†UT and b0 is an arbitrary vector. It’s clear that Ax = AA†b+A(I−
A†A)b0 = b since AA† = I, but let’s take a closer look.
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x = A†b+ (I −A†A)b0

= (V Σ†UT )b+ (I − (UΣV T )(V Σ†UT )b0

= (V Σ†UT )b+ (V V T − (V Σ†UT )(UΣV T ))b0

= (V Σ†UT )b+ (V (I − Σ†Σ)V T ))b0

The second term in this last line has Σ†Σ which is a diagonal matrix with ones in
the first r diagonal entries and zeros on the remaining n− r - so (I − Σ†Σ) instead has
ones in the last n− r spots. This is a “selector” matrix which picks out the orthonormal
basis for the nullspace contained in the last columns of V . Hence, (I − A†A) nothing
more than a projector into the nullspace of A, allowing for an arbitrary choice of b0.



Chapter 3

Differential Geometry

3.1 Curves, Surfaces and Manifolds

A (topological) manifold is, roughly speaking, a space which is locally Euclidean. A
manifold is said to be of dimension n if there exists at every point a homeomorphism
(continuous map having a continuous inverse) between a neighbourhood of that point
and Rn. In this case, it is called an n-manifold ; in general it is assumed that manifolds
have a fixed dimension (they are pure). For example, a one-dimensional manifold is a
curve; a two-dimensional manifold is a surface.

A chart is an invertible, structure-preserving map (homeomorphism) φ between an
open subset of the manifold U and n-dimensional Euclidean space and is denoted by
(U, φ). In general, it is not possible to cover the entire manifold with a single chart; the
collection of multiple, overlapping charts which describes a manifold is called an atlas.
Recall that we described curves in terms of a single parameter t along with a map α(t);
similarly, we described surfaces in terms of the parameter space defined by u and v along
with a map x(u, v). An atlas of charts can thus be thought of as the extension of these
parameterizations to general n-manifolds.

3.1.1 Smoothness

A differentiable or smooth manifold is a manifold which has a global differential structure,
allowing differential calculus to be done on the manifold. Any manifold can be given local
differential structure at a point by constructing the linear tangent space from its chart;
however, in order to induce a global differential structure, we must impose smoothness
constraints on the intersections of different charts in the manifold’s atlas.

Consider an arbitrary n-manifold M and let φα and φβ be maps from the open subsets
Uα ⊂M and Uβ ⊂M to the subsets Wα and Wβ of Rn; that is, we have φα : Uα →Wα

and φβ : Uβ →Wβ. Consider the intersection Uαβ = Uα ∩ Uβ ⊂M which is the overlap
of the domains of the two charts. The images of these sets according to each of the
charts are Wαβ = φα(Uαβ) ⊂ Rn and Wβα = φβ(Uαβ) ⊂ Rn. We define the transition
map between the charts as the mapping φαβ : Wαβ →Wβα between subsets in Rn given

49
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by the chart composition φαβ = φβ ◦φ−1
α . Two charts are denoted Ck-compatible if Wαβ

and Wβα are open and the transition maps φαβ and φβα have continuous derivatives of
order k. If all charts in an atlas are Ck-compatible then they form a Ck-atlas which
defines a Ck differential manifold.

For k = 0 we simply have a topological manifold, ie one whose transition maps are
continuous. This definition of smoothness extends to lower-dimensional manifolds as
well. For example, consider a piecewise curve described by the function

y =

{
f1(x) = x x ≤ 0

f2(x) = x2 x ≥ 0

where φ1 = f−1
1 = y and φ2 = f−1

2 =
√
y are charts mapping y to x (from the curve

to the interval) with domains which overlap at the point x = 0. The transition maps
are φ12 = φ2 ◦ φ−1

1 == 1/x has derivative −1/x2 which is clearly not continuous at the
point x = 0, making it a C0 differentiable manifold in R (in other words, a continuous
curve). FIX THIS

3.1.2 Functions on Manifolds

Let f : M → R be a real-valued function defined on an n-dimensional differentiable
manifold. The function is differentiable at a point p ∈ U ⊂ M if and only if f̃ =
f ◦ φ−1 : φ(U) ⊂ Rn → R is differentiable at φ(p). That is, f is differentiable iff the
function defined on the manifold is differentiable with respect to the Euclidean space.
Differentiability thus depends on the choice of chart φ at point p ∈ U which is not
unique since there may be many overlapping charts which contain p. However, if f is
differentiable with respect to one chart at p then it is differentiable with respect to any
other since the manifold is smooth (has smooth transition charts).

3.2 Quaternions and Rotations

The rotation group (or special orthogonal group in three dimensions) is a manifold
denoted by SO(3). The orthogonal group O(n) is the group of all length-preserving linear
transformations under the operation of composition; the special orthogonal group SO(n)
is the restriction of the orthogonal group to those transformations which additionally
preserve orientation (handedness of the space).

From Euler’s rotation theorem, we know that any rotation in three dimensions can be
represented by a rotation around an axis by an angle. This naturally leads to visualizing
the rotation group as the sphere in four-dimensional space or S3. Recall that the n-
dimensional real projective space RPn is the topological space of all lines passing through
the origin in Rn+1; this space is diffeomorphic to S3 with antipodal points identified (or
”glued together”). Thus, charts on SO(3) which try to model the manifold using R3

will inevitably run into problems.
The first such parameterization is that of Euler angles, which represent the rotation

group by a sequence of three rotation angles. It can be shown that Euler angles lie on
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a torus and that the map from angles to rotations (from the torus to the real projective
space of dimension three) is not a covering map ie is not a homeomorphism (continuous
bijection with a continuous inverse) and therefore is not a diffeomorphism (a differen-
tiable homeomorphism). To see that the space of Euler angles is a torus, consider the
following. Consider representing rotations in two dimensions with two Euler angles.
These angles each vary from 0 to 2π and can thus be represented by a plane (subset of
R2). However, rotations are cyclic and so we must roll the plane up into a tube and
then bend it around into a torus in order to satisfy this constraint. The Euler angles in
3D live on a higher dimensional torus.

Recall that we defined a regular parameterization of a curve to be one whose tangent
vector is nonzero; likewise, we defined a regular parameterized surface to be one whose
Jacobian map is nonsingular. Considering the first-order Taylor series expansions of
each of these parameterizations, it’s clear that regularity of parametrization implies that
these maps are one-to-one. Analogously, we define a diffeomorphic chart to be one
whose topological rank is equal to the dimension of the manifold. If f : M → N be
a differentiable map between differentiable manifolds then we define the rank of f at a
point p ∈M to be the rank of the derivative of f at p. Since the map from the torus to
RP 3 is not diffeomorphic, this implies that there are points at which the rank of this map
is less than three and thus changes in the tangent space of rotations don’t show up as
changes in Euler angles. We can think of this as the number of degrees of freedom of this
system being reduced at these points; this is known as gimbal lock because it describes
the phenomenon of gimbals aligning such that they no longer describe independent
rotations.

Quaternions, on the other hand, provide a covering map from S3 to RP 3 and hence
are free from such singularities.

3.2.1 Interpolating Rotations (SLERP)

SLERP, or Spherical Linear Interpolation, is used to interpolate between elements of
SO(3). If one simply attempts to perform linear interpolation between two rotations, the
result will not be a valid rotation (it will not lie on the manifold). While it is possible
to ”fix” this issue by various means (for example, by performing linear interpolation
and then projecting the result back onto the manifold), the proper way to interpolate
elements of a manifold is to use its geodesics (curves of shortest length between points).
For rotations R1, R2 ∈ SO(3) we interpolate rotations between R1 and R2 as

Rt = et log (R−1
2 R1)R1

where t ∈ [0, 1]. We thus perform linear interpolation on the manifold, and since
SO(3) is isomorphic to the unit sphere S(3) we call this spherical linear interpolation.
Note that R1, R2 denote either rotation
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3.3 Lie Groups

A group is a set together with a binary operation which satisfies the properties of clo-
sure, associativity, identity and inverse. A Lie group - denoted G - is a differentiable
manifold which is also a group (the group operation and the inverse operation are both
differentiable). Similar to a Riemannian manifold, the local structure of a Lie group is
described by its tangent space.

The tangent space at the identity is known as the infinitesimal group or, more com-
monly, the Lie algebra. The Lie algebra g of a Lie group G is a vector space together
with an operation called the Lie bracket denoted [x, y] for x, y ∈ g which is

• Bilinear, ie satisfies [x1 + x2, y] = [x1, y] + [x2, y], [x, y1 + y2] = [x, y1] + [x, y2],
[αx, y] = α[x, y] and [x, αy] = α[x, y].

• Alternating, ie satisfies [x, x] = 0.

• Satisfies the Jacobi identity [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Note that the first two properties imply anticommutativity of the Lie bracket since

[x+ y, x+ y] = [x, x] + [y, x] + [x, y] + [y, y] = [y, x] + [x, y] = 0

implies that [y, x] = −[x, y]. Also note that the Jacobi identity can be rewritten
as [x, [y, z]] = [[x, y], z] + [[z, x], y] which implies that the Lie algebra is associative iff
[[z, x], y] = 0 for any x, y, z ∈ g. Finally, the Lie algebra is commutative or Abelian if
[x, y] = [y, x] which, from the anticommutativity property, implies that we must have
[x, y] = 0. For example, if g = M(n) then [x, y] = xy − yx; if g = R3 then [x, y] = x× y
(the cross product).

3.4 Principal Geodesic Analysis

Principal Geodesic Analysis (PGA) is a method for generalizing the concept of PCA to
data which lie on a manifold M rather than in Rn. This section presents some of the
basic tools used in the development of PGA.

First, we limit our approach to smooth manifolds equipped with an inner product
〈·, ·〉 defined on the tangent space TpM at each point p ∈M such that this inner product
varies smoothly across the manifold. This makes M into a Riemannian manifold with
corresponding Riemannian metric. The existence of such a metric allows us to perform
calculus on the manifold - for example, given a smooth curve γ(t) : R → M on the

manifold, we compute its length as Lγ(a, b) =
∫ b
a ||γ(t)′||dt where ||γ′(t)|| =

√
〈γ′, γ′〉.

Distance on a Riemannian manifold d(x, y) is defined as the length of the shortest curve
among all curves in M (called a geodesic curve) between two points x, y ∈M .

Likewise, the existence of such a metric allows us to treat M as being locally Eu-
clidean and use techniques from linear algebra within the tangent space at each point.
In order to relate quantities in the tangent space and the manifold in the neighbourhood
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of a point p ∈ M , we make use of the exponential map expp : TpM → M . This is the
generalization of the exponential function to Riemannian manifolds; roughly speaking,
it relates a direction in the tangent space of M at a point p ∈M to a nearby point on the
manifold. More precisely: given a vector v ∈ TpM , there exists a geodesic curve γ ∈M
with γ(0) = p and γ′(0) = v such that expp(v) = γ(1). Since all geodesics are defined as
having constant speed, we know that ||γ′(t)|| = ||v||; note again that the norm is with
respect to the Riemannian metric at each point. We thus have that

d(p, expp(v)) = Lγ(γ−1(p), γ−1(expp(v))) = Lγ(0, 1) =

∫ 1

0
||γ′(t)||dt = ||v||

∫ 1

0
dt = ||v||

which implies that the exponential map preserves distances from p. Note that a
manifold is geodesically complete if all its geodesics have domain R (rather than some
subset of R, ie they extend indefinitely); this is important because, by the Hopf-Rinow
theorem, it implies that there exists at least one geodesic between any two points on
the manifold. Equivalently, it implies that the for each p ∈ M , the exponential map is
defined on the entire tangent space TpM .

However, expp is a diffeomorphism (isomorphism of a smooth manifold aka one-to-one
function) only in the neighbourhood of 0 ∈ TpM , where its inverse is logp : M → TpM .
It follows that, for x ∈M and v ∈ TpM such that expx(v) = y ∈M , we have

d(x, y) = d(x, expx(v)) = ||v|| = || logx(expx(v))|| = || logx(y)||

where the norm of a vector in the tangent space is simply the appropriate Euclidean
norm. The map logx(y) thus measures the geodesic distance from x ∈M to y ∈M . We
can also write this as

d(x, y) = || log(x−1y)||

where the logarithm above is defined at the identity.
We begin the derivation with a brief review of PCA.

3.4.1 Principal Component Analysis (Review)

Given a dataset, PCA is a method for determining the directions in which the data has
the most variability. The data can then be projected onto a basis of these principal
components in such a way that the variability of the original dataset is preserved as
explained below.

Let xi = x̃− µi be the ith centered data point and let

X = [x1 · · ·xn]

be the matrix of data points. Then the covariance matrix of this dataset is Σ =
XXT where the normalization term 1

n has been dropped for simplicity. Now, consider
computing the covariance matrix of the projection of this dataset onto a k-dimensional
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subspace spanned by the vectors {u1, u2, . . . uk}. For an arbitrary subspace we know that
the least-squares projection of xi onto U = [u1 · · ·uk] is given by x̂i = (UTU)−1UTxi or
x̂i = UTxi if the basis is orthonormal. The matrix of data points represented in the new
basis is then X̂ = [x̂1 · · · x̂n] = UTX. It follows that the covariance matrix is

ΣU = X̂X̂T

= (UTX)(UTX)T

= UTXXTU

Now, consider computing the variance of the projection of the data onto a single
dimension specified by the unit vector u

||u|| . In this case we have

σu =
uTXXTu

uTu

The quadratic form involving Σ = XXT thus gives the variance of the data along
any dimension! Further, we recognize this as a Rayleigh form; it can be shown that the
maximum variance is given by the largest eigenvalue of Σ and that this occurs when u
is equal to the corresponding eigenvector (since the eigenvectors of a symmetric matrix
are orthogonal, we can simply choose these as the principal component directions and
be done).

We thus choose the first principal component v0 to be the eigenvector correspond-
ing to the largest eigenvalue. We proceed to choose the remaining principal directions
recursively as

vk = arg max
||u||=1

uTXkX
T
k u

where

Xk = (Xk−1 −
k−1∑
j=1

vjv
T
j Xk−1)

is the matrix of data points minus their projection onto the components which were
already selected, ie the matrix of residuals after the k − 1 projection step. Intuitively,
we wish to choose the next principal direction to maximize the variance of what’s left
after the previous projections. Consider the case k = 1; we see that
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Σ1 = X1X
T
1

= (X − v0v
T
0 X)(X − v0v

T
0 X)T

= (X − v0v
T
0 X)(XT −XT v0v

T
0 )

= XXT −XXT v0v
T
0 + v0v

T
0 XX

T − v0v
T
0 XX

T v0v
T
0

= XXT − 2XXT v0v
T
0 + v0v

T
0 XX

T v0v
T
0

= XXT − 2λ1v0v
T
0 + λ1v0v

T
0 v0v

T
0

= XXT − λ1v0v
T
0

=

m∑
i=1

λiqiq
T
i − λ1q1q

T
1

=

m∑
i=2

λiqiq
T
i

where λi is the eigenvalue corresponding to the ith largest eigenvector qi of Σ1. We
know that maximizing uTΣ1u amounts to choosing the largest eigenvector of Σ1 - which
is simply the second largest eigenvector of Σ according to the above. We can see that,
in general, vk should be chosen as the eigenvector corresponding to the k + 1 largest
eigenvalue of Σ.

This implies that PCA reduces to nothing more than the eigendecomposition of the
data covariance matrix XXT or, equivalently, the Singular Value Decomposition (SVD)
of X. Of course, PCA (and these equivalent decompositions) are applicable only to data
points which exist in Euclidean space; it is not obvious how to generalize the notions of
statistics and projections to the manifold setting.

3.4.2 Extension of PCA to manifolds

In order to ease the transition to manifolds, we define PCA in an alternative manner as
follows. The first principal component is the one-dimensional subspace satisfying

u(1) = arg min
||v||=1

N∑
i=1

||xi − vvTxi||2

We then define the remaining components recursively as

u(k) = arg min
||v||=1

N∑
i=1

||xi − x̃i||2

where

x̃i =
k−1∑
j=1

vjv
T
j xi + vvTxi
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where x̃i is the projection of xi onto the first k principal components. Intuitively, at
each step we seek to choose u(k) in order to minimize the norm of the residual xi − x̃i
given the k − 1 principal components which were already chosen. Since the projection
and the residual are orthogonal, we can consider minimizing the residual to be equivalent
to maximizing the projection; the two approaches are thus equivalent in the linear case.

We have thus shown that dimensionality reduction via PCA is performed by pro-
jecting the high-dimensional data onto a linear subspace of lower dimension spanned
by the principal components of the data. Likewise, PGA projects data onto a series
of geodesic submanifolds which best capture the variability in the data. In order to
describe the method, we must first define the concepts of mean, variance and projection
in the manifold setting.

3.4.3 Statistics of Manifold Data

The arithmetic mean of a set of points {xi, . . . , xN} ∈ Rn is defined as

µ =
1

N

N∑
i=1

xi

This definition results from the optimization problem

µ = arg miny

N∑
i=1

||y − xi||2

How do we extend this mean to manifolds? We might first try embedding manifold-
valued data in Rn and computing the above mean. However, the result is not guaranteed
to lie in M so we then project it to the nearest point on the manifold (in terms of
Euclidean distance). We call this the extrinsic mean of the data; it does not make use
of the Riemannian structure of M and it depends entirely on the chosen embedding.

On the other hand, we may define the mean of manifold-valued data more methodi-
cally as the solution to the problem

µ = arg miny∈M

N∑
i=1

d(xi, y)2

where the distance metric is the Riemannian metric. For a general metric space and
associated distance metric, this is known as the Frechet mean or intrinsic mean of the
set. The result is automatically constrained to lie on the manifold and depends only on
the chosen metric (which is a property intrinsic to the manifold).

Recall that the distance between two points x, y ∈ M can be written as d(x, y) =
|| log(x−1y)||. For x, y ∈ R, we know that z = log(exey) = log(ex+y) = x + y; however,
this is not true in general. For a Lie group G with Lie algebra g, we have the Campbell-
Baker-Hausdorff (CBH) forumla which states that for x, y ∈ g

z = log(exey) = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]] + · · ·
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where [x, y] denotes the Lie bracket of x and y. To first order, we may write z ≈ x+y;
we can thus write

d(x, y) = || log(exp(log(x−1)) exp(y))|| ≈ || log(x−1) + log(y)|| = || log(y)− log(x)||

The problem of determining the intrinsic mean thus becomes

µ = arg miny∈M

N∑
i=1

|| log(y)− log(x)||2

which has the solution

log(µ) =
1

N

N∑
i=1

log(xi)

it follows that the first-order estimate of the intrinsic mean is then

µ̂ = exp

(
1

N

N∑
i=1

log(xi)

)
The true mean can be found through a process of iterative refinement. Recall that

the CBH formula is defined for elements in the Lie algebra, ie in the tangent space at
the identity; by shifting our data to the identity, we limit the approximation error. We
thus proceed by

• Choosing one of the data points (or any other known point on the manifold) to be
the initial mean.

• Left translating all data points by the inverse of the initial mean such that they lie
in the neighborhood of the identity (with the initial mean becoming the identity).

• Computing the mean of the translated points.

• Updating the previous mean using the mean computed at the identity.

This process is repeated until the update of the mean falls below a predetermined
threshold. More formally,

It can be shown that this algorithm is equivalent to gradient descent on the original
cost function and that it converges if the data is well-localized and the initial mean is
chosen carefully.

The variance of data {xi, . . . , xN} ∈ R can be defined as

σ2 =
1

N

N∑
i=1

(xi − µ)2

Analogously, for manifold data we define the variance as
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σ2 =
1

N

N∑
i=1

d(µ, xi)
2 =

1

N

N∑
i=1

|| log(µ−1xi)||2

which is clearly a generalization of the real-valued case.

3.4.4 Geodesic Subspaces and Projection

In Rn, we define the orthogonal projection of a vector x onto the direction specified by
a unit vector v as vTx. This is the coordinate of the projection along the direction given
by v; in the original space, the projection is simply x̃ = vvTx. This definition results
from the fact that we choose x̃ to be a scalar multiple of v such that the projection error
(or residual) is orthogonal to v.

In the manifold case, we don’t have the notion of orthogonality which we used in the
linear case. Instead, we define the projection of a point x on a set H more generally as

x̃ = arg min
y∈H

d(x, y)2

In the linear case, we considered projections onto linear subspaces ie lines. The nat-
ural generalization to manifolds is projection onto geodesics, which can be viewed as
straight lines on the manifold. We refer to this as a geodesic subspace or geodesic sub-
manifold H of the manifold M and use the Riemannian metric as the distance function
in the definition of the projection.



Chapter 4

Dynamics

4.1 Intro to Analytical Dynamics

Consider a system of n point masses (particles) whose motion is described by the coor-
dinates of each particle with respect to some inertial Cartesian frame of reference. Each
of these particles has three positional components; the components of all n particles can
thus be stacked into the 3n dimensional vector x(t). Assume that the initial position
and velocity of each particle, denoted x(t0) and ẋ(t0), are known. Also assume that the
impressed force on each particle is known, ie the vector F (t) ∈ R3n is given. The motion
of the unconstrained system is then described by Netwon’s law:

Mẍ(t) = F (x(t), ẋ(t), t)

where M ∈ R3n×3n is the diagonal matrix of particle masses (which appear in threes)
and the impressed force can clearly be a function of the system state and time. We can
solve for the motion of the particles simply as

ẍ = M−1F = a(t)

Of course, this problem is uninteresting and has few practical applications because
we have assumed that the particles move independently of one another and freely in
space. We thus enforce constraints on the motion of the particles, expressed as the set
of m consistent constraint equations of the form

D(x(t), t)ẋ = g(x(t), t)

where D ∈ Rm×3n and g ∈ Rm×1 specify the set of constraints.
The central problem we’re concerned with in analytical dynamics is then the follow-

ing: given the position x(t), velocity ẋ(t) and impressed force F (t) acting on a system
of particles at time t, determine the instantaneous acceleration ẍ(t) of the system in the
presence of a set of constraints on the system’s motion.

We can think of the constraints as creating forces which alter the free motion of the
particles, ie

59
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Mẍ(t) = F (x(t), ẋ(t), t) + F c

where the constraint force F c ∈ R3n×1 is what we wish to determine. This constraint
force must exist such that it both forces the unconstrained motion of the system to obey
the constraints and satisfies accepted principles of analytical dynamics (for example,
Gauss’ principle of least action).

4.2 Constraints

4.2.1 Holonomic Constraints

Any constraint of the form

f(x, t) = 0

is called a holonomic constraint. If the constraint does not depend on time, then
it is called scleronomic; otherwise, it is called rheonomic (which is more general). The
scleronomic constraint

f(x) = 0

essentially constraints this configuration point x ∈ R3n×1 to lie on a (3n − 1)-
dimensional surface (manifold) in the full space R3n. A time-varying constraint then
constraints the configuration to lie on a surface which deforms over time. Assuming the
general rheonomic constraint has partial derivatives, its total differential (which describes
how the constraint changes with infinitesimal changes in all its dependent variables) is

n∑
i=1

∂f

∂xi
dxi +

n∑
i=1

∂f

∂yi
dyi +

n∑
i=1

∂f

∂zi
dzi +

∂f

∂t
dt = 0

This equation describes the constraints on the infinitesimal displacements dxi, dyi, dzi, dt
and will be useful later. This equation is clearly integrable (it integrates to the con-
straint) and is said to be in Pfaffian form.

Alternatively, differentiating the rheonomic constraint with respect to time alone
yields

n∑
i=1

∂f

∂xi
ẋi +

n∑
i=1

∂f

∂yi
ẏi +

n∑
i=1

∂f

∂zi
żi +

∂f

∂t
= 0

Any set of velocities {ẋ, ẏ, ż} of all particles which satisfy the above equation also
satisfy the constraint; for this reason, the set is called a possible set of velocities.

If a system of particles is subjected to multiple constraints, the particles are then
constrained to lie on the surface defined by the intersection of all constraints. If there
exist 3n independent constraints, then the system of particles is constrained to a single
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configuration point (which moves in time in the case of rheonomic constraints) and thus
its motion is independent of the impressed forces!

In general, let there be h holonomic constraints on the system written as

f(x, t) = 0 ∀i = 1, 2, . . . , h

These constraints are written in Pfaffian form using the total derivative and chain
rule as

3n∑
j=1

dij(x, t)dxj + gi(x, t)dt ∀i = 1, 2, . . . , h

in terms of infinitesimal displacements where

dij(x, t) =
∂fi(x, t)

∂xj
, gi(x, t) =

∂fi(x, t)

∂t

Alternatively, they can be written in terms of possible velocities as

3n∑
j=1

dij(x, t)ẋj + gi(x, t) ∀i = 1, 2, . . . , h

These h constrains reduce the dimensionality of the space of possible system configu-
rations from 3n to (3n−h). We will be concerned with whether or not these constraints
are consistent with one-another rather than independent; fulfillment of any one con-
straint should not make it impossible to fulfill any other.

4.2.2 Nonholonomic Constraints

Any constraint which cannot be put into the form

f(x, t) = 0

is defined to be nonholonomic. These include, for example, inequality constraints.
More precisely, any Pfaffian form

3n∑
j=1

dij(x, t)dxj + gi(x, t)dt ∀i = 1, 2, . . . , r

which is NOT integrable leads to a nonholonomic constraint. While we can specify
constraints on the infinitesimal displacements of the system subject to a nonholonomic
constraint in exactly the same way as for holonomic constraints, we cannot find the cor-
responding restrictions on finite displacements because we cannot integrate their Pfaffian
forms.

However, both the possible velocity constraints for the h holonomic and r non-
holonomic constraints can be differentiated (with respect to time) to produce a set
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of m = h + r constraints on possible accelerations of the system. This is useful since
Netwon’s law works on the level of accelerations. Assuming the functions dij(x, t) and
gi(x, t) are sufficiently smooth, we obtain

3n∑
j=1

dij(x, t)ẍj +
3n∑
j=1

[
3n∑
k=1

dij(x, t)

∂xk
ẋk

]
ẋj +

3n∑
j=1

dij(x, t)

∂t
ẋj

+

3n∑
k=1

∂gi(x, t)

∂xk
ẋk +

∂gi(x, t)

∂t
= 0 ∀i = 1, 2, . . . ,m

after multiple applications of the chain rule (remembering that each dij is a function
of both t and x which is itself a function of t). We can write these acceleration constraints
in matrix form as

A(x, t)ẍ = b(x, ẋ, t)

where ẍ is the vector of stacked acceleration components of all particles in the system.
More generally, we will allow the elements of A to depend on velocity as well, resulting
in acceleration constraints of the form

A(x, ẋ, t)ẍ = b(x, ẋ, t)

which can be though of as arising from differentiating constraints of the form φ(x, ẋ, t) =
0 twice.

Once we put our constraints in this form, we don’t really care whether they are
holonomic or not. If k of these m total constraints are linearly independent, the rank of
the matrix A is k and we can arbitrarily prescribe 3n− k of the components of ẍ since
they lie in the nullspace of A and thus do not affect satisfaction of the constraints.

We call d = 3n − k the number of degrees of freedom of the system. Of course, we
assume all constraints are consistent.

4.3 Gauss’ Principle

The problem of the unconstrained motion of a system of particles is described by the
equation

Ma = F (x(t), ẋ(t), t)

where M is the diagonal matrix of particle masses (in sets of threes), a is the vector
of stacked unconstrained accelerations and F is the vector of stacked impressed forces,
assumed to be known given the state of the system.

However, the motion of the particles changes when subject to constraints; we denote
the constrained acceleration of the system by the vector ẍ(t). There are many possi-
ble accelerations at any time t which satisfy the acceleration-level constraints; Gauss’
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principle states that among all possible accelerations, the true constrained accelerations
minimize the form

G(ẍ) = (ẍ− a)TM(ẍ− a) = (M1/2ẍ−M1/2a)T (M1/2ẍ−M1/2a)

where the scalar G(ẍ) is called the Gaussian. In other words, among all possible
constrained accelerations, the ones which materialize are those which are closest to the
unconstrained accelerations in terms of the L2 norm defined by the matrix M .

4.4 The Fundamental Equation

The constrained acceleration which minimizes the Gaussian is given by

ẍ = a+M−1/2(AM−1/2)†(b−Aa)

where (AM−1/2)† is the unique MP-inverse of the Constraint Matrix matrix AM−1/2.
We can verify this be proving that ẍ both satisfies the constraints and results in the
minimum Gaussian among all constraint-consistent accelerations. Alternatively, this
can be obtained directly by minimizing the Gaussian with respect to the constraints
since this is simply a least-squares problem with linear equality constraints (and is thus
solvable via the method of Lagrange multipliers, for example).

From the fact that Ma = F (t) where F are the impressed forces acting on the system,
we can multiply the fundamental equation given above on the left by M and write the
result as

Mẍ = Ma+M1/2(AM−1/2)†(b−Aa) = F (t) + F c(t)

where F c(t) denotes the additional so-called constraint force acting on the system.
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Systems and Control Theory

5.1 System Representations

The objective of control theory is to manipulate the input to a system such that the
outputs behave according to some specifications. We thus focus on the input-output
behavior of systems.

We define the state x(t) of a system to be the minimum set of parameters that,
if provided at some initial time t = t0 together with the input u(t) for t ≥ t0, allow
for unique determination of the output y(t). The definition of the system state is not
unique, nor does it have to be finite.

The state representation of a general nonlinear, time-varying system with n states,
m inputs and k outputs may be written as

ẋi(t) = fi(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), i = 1, . . . , n

yi(t) = g(t, x1(t), . . . , xn(t), u1(t), . . . , un(t)), i = 1, . . . , k

or, more compactly, as

ẋ(t) = f(t, x(t), u(t)), y(t) = g(t, x(t), u(t))

where x = [x1, . . . , xn]T ∈ Rn, u = [u1, . . . , um]T ∈ Rm, y = [y1, . . . , yk]
T ∈ Rk and

f(t, x(t), u(t)) =

f1(t, x(t), u(t))
...

fn(t, x(t), u(t))

 g(t, x(t), u(t)) =

g1(t, x(t), u(t))
...

gn(t, x(t), u(t))


If the system is linear then it has the form

64



CHAPTER 5. SYSTEMS AND CONTROL THEORY 65

ẋ1(t) = a11x1 + · · ·+ a1nxn + b11u1 + · · ·+ b1mum
...

ẋn(t) = an1x1 + · · ·+ annxn + bn1u1 + · · ·+ bnmum

ẏ1(t) = c11x1 + · · ·+ c1nxn + d11u1 + · · ·+ d1mum
...

ẏk(t) = ck1x1 + · · ·+ cknxn + dk1u1 + · · ·+ dkmum

where the coefficients may be time varying (for an LTV system). We can write the
above system compactly in state-space form as

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t)

where

A(t) =

a11(t) · · · a1n(t)
...

. . .
...

an1(t) · · · ann(t)

 , B(t) =

b11(t) · · · b1m(t)
...

. . .
...

bn1(t) · · · anm(t)


C(t) =

c11(t) · · · c1n(t)
...

. . .
...

ck1(t) · · · ckn(t)

 , D(t) =

d11(t) · · · a1m(t)
...

. . .
...

dk1(t) · · · akm(t)



where A(t) ∈ Rn×n is the dynamics matrix, B(t) ∈ Rn×m is the input matrix,
C(t) ∈ Rk×n is the output matrix and D(t) ∈ Rk×m is the (direct) feedthrough matrix.

5.1.1 Properties of Linear Systems:

By definition, a linear dynamic system is one in which, for any α, β ∈ R, we have

G(αu1(t) + βu2(t)) = αG(u1(t)) + βG(u2(t)) = αy1(t) + βy2(t)

where G is an operator representing the system.
For linear systems, the condition for existence and uniqueness of a solution for some

input u(t) is that the elements of the dynamics matrix aij(t) are piecewise continuous
functions of time. LTI systems always have unique solutions.
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5.1.2 Linearization of State Equations

The state xe ∈ Rn is an equilibrium state of the general dynamic system

ẋ(t) = f(t, x(t), u(t))

y(t) = g(t, x(t), u(t))

at time t = t0 for a given constant input u(t) = ue if f(t, xe, ue) = 0. Note that for
a time-invariant system, equilibrium at t = t0 implies equilibrium for any time t ≥ t0.

We may linearize a system about an equilibrium point by considering the system
dynamics in response to a small perturbation about that point. The result is that a
nonlinear, time-invariant system can be linearized about a point {xe, ue} as

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

where

A =
∂f

∂x
, B =

∂f

∂u

C =
∂g

∂x
, B =

∂g

∂u

5.1.3 Transfer Functions of a State-Space Realization

Given the LTI system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

we take the Laplace transform of both sides to yield

sx(s)− x(0) = Ax(s) +Bu(s), y(s) = Cx(s) +Du(s)

Solving the first equation for x(s) in terms of u(s) and x(0) and substituting the
result into the second equation, we find that

y(s) = C(sI −A)−1x(0) +G(s)u(s)

where

G(s) = C(sI −A)−1B +D

is the k ×m transfer function matrix composed of km scalar transfer functions; the
entry Gij is the SISO transfer function relating input j to output i. The first term in
the expression for y(s) is the homogeneous solution corresponding to initial condition
x(0).
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Note that while the state-space realization {A,B,C,D} is not unique, the transfer
function G(s) is unique.

Given a transfer function G(s), we say that the state realization S : {A,B,C,D} is
a state space realization of G(s) if

G(s) = C(sI −A)−1B +D

From the formula for the matrix inverse we know that

G(s) =
1

|sI −A|
C(adj(sI −A)T )B +D

Since adjA contains contains continuous determinants of (n−1)×(n−1) submatrices
of A, then the elements of G(s) must be proper rational functions, ie they are ratios of
polynomials of equal orders. If D = 0 then the elements of G(s) are ratios of polynomials
of order (n− 1) and polynomials of order n; these are strictly proper rational functions.

5.1.4 Realization of SISO Transfer Functions

Controllable Canonical Form:

Given the SISO transfer function

g(s) =
y(s)

u(s)
=

b1s
n−1 + b2s

n−2 + · · ·+ bn
sn + a1sn−1 + a2sn−2 + · · ·+ an

we seek to find a state-space realization of g(s) (recall that such a realization is not
unique).

We define

φ(s)

u(s)
=

1

sn + a1sn−1 + a2sn−2 + · · ·+ an
=

1

a(s)

so that

φ(n) + a1φ
(n−1) + a2φ

(n−2) + · · ·+ anφ = u

Now, we define our states to be x1 = φ, x2 = φ(2), and so on until xn−1 = φ(n−1).
Using these states, the dynamics of our system are

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

...

ẋn−1 = −a1xn−1 − a2xn−2 − · · · − anx1 + u
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and the output equation becomes

y(s) = b1s
n−1u(s)

a(s)
+ b2s

n−2u(s)

a(s)
+ · · ·+ bn

u(s)

a(s)

Recall however that φ(s) = u(s)
a(s) ; thus,

y(s) = bnx1 + bn−1x2 + · · · b1xn
The state-space realization of the system is then


ẋ1

ẋ2
...
ẋn

 =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−an · · · −a2 −a1

+


0
0
...
1

u

y =
[
bn bn−1 · · · b1

]

x1

x2
...
xn


Observable Canonical Form:

ẋ1

ẋ2
...
ẋn

 =


0 · · · 0 −an
1 · · · 0 −an−1
...

. . .
...

...
0 · · · 1 −a1

+


bn
bn−1

...
b1

u

y =
[
0 0 · · · 1

]

x1

x2
...
xn


Note that Ao = ATc , Bo = CTc , Co = BT

c and Do = Dc. It is thus said that the
controllable and observable canonical forms are dual.

Systems with a direct feedthrough term:

Assume that the order of the numerator and denominator are equal (the transfer function
is a proper rational function).

g(s) =
y(s)

u(s)
=
b0s

n + b1s
n−1 + b2s

n−2 + · · ·+ bn
sn + a1sn−1 + a2sn−2 + · · ·+ an
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Then g(s) can be rewritten as

g(s) =
b0s

n + b1s
n−1 + b2s

n−2 + · · ·+ bn
sn + a1sn−1 + a2sn−2 + · · ·+ an

=
b0[sn + a1s

n−1 + a2s
n−2 + · · ·+ an] + [(b1 − b0a1)sn−1 + (b2 − b0a2)sn−2 + · · ·+ (bn − b0an)]

sn + a1sn−1 + a2sn−2 + · · ·+ an

= b0 +
(b1 − b0a1)sn−1 + (b2 − b0a2)sn−2 + · · ·+ (bn − b0an)

sn + an−1
1 + a2sn−2 + · · ·+ an

which makes it clear that b0 represents the feedthrough term from input to output.
Note that we can write this system in the above canonical forms (a direct feedthrough
term will be introduced in the output equation).

Parallel Realizations:

Given the strictly proper SISO transfer function

g(s) =
y(s)

u(s)
=

b1s
n−1 + b2s

n−2 + · · ·+ bn
sn + a1sn−1 + a2sn−2 + · · ·+ an

Assume that all the roots λi, i = 1, . . . , n of the characteristic polynomial are distinct.
We can thus factor g(s) as

g(s) =
y(s)

u(s)
=

g1

s− λ1
+

g2

s− λ2
+ · · ·+ gn

s− λn
Now, define the states

x1(s) =
g1

s− λ1
u(s)

...

xn(s) =
gn

s− λn
u(s)

Hence, we have the system described by

ẋi = λixi + giu i = 1, . . . , n

y = x1 + · · ·+ xn

The SISO system thus decouples into n one-dimensional SISO systems! The corre-
sponding state space realization is thus parameterized by
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A =

λ1 · · · 0
...

. . .
...

0 · · · λn

 , B =


g1

g2
...
gn


C =

[
1 1 · · · 1

]
Note that if some gi = 0, there was a pole-zero cancellation. From inspection of the

state-space system, it’s clear that the corresponding state xi thus cannot be affected by
input u (since all the states are decoupled). We thus say that xi is an uncontrollable
state.

Alternatively, we may define the states to be

xi(s) =
1

s− λ1
u(s), i = 1, . . . , n

which leads to the realization

A =

λ1 · · · 0
...

. . .
...

0 · · · λn

 , B =


1
1
...
1


C =

[
g1 g2 · · · gn

]
If some gi = 0 in this case due to a pole-zero cancellation, inspection of the above

realization shows that the corresponding state xi does not show up in the output y and
hence cannot be measured! We thus say that xi is an unobservable state. By a simple
change of state variables, we have shown that controllability and observability are two
sides of the same coin - you can always make an uncontrollable state controllable, but
at the cost of observability (and vice-versa).

Finally, define the states as

xi(s) =
bi

s− λ1
u(s), i = 1, . . . , n

where cibi = gi. This leads to the realization
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A =

λ1 · · · 0
...

. . .
...

0 · · · λn

 , B =


b1
b2
...
bn


C =

[
c1 c2 · · · cn

]
In this case, if some gi = 0 then either bi = 0 or ci = 0 and the corresponding state

xi is either uncontrollable or unobservable (you can’t tell which it is!)
Note that if the transfer function is proper instead of strictly proper, we simply factor

it as above and go through the same steps to find the corresponding parallel realization
(a direct feedthrough term will appear).

5.1.5 Equivalent Realizations

Given the linear, time-invariant, state-space system

ẋ = Ax+Bu, y = Cx+Du

we seek to find the representation of the system when the state vector is defined in
a new basis corresponding to some nonsingular matrix T . The representation x̄ of x in
the basis T is written x = T x̄; solving for x̄ yields x̄ = T−1x. Writing the system in
terms of this new state yields

T ˙̄x = ATx̄+Bu, y = CTx̄+Du

Multiplying both sides of the dynamics equation by T−1, we have

˙̄x = Āx̄+ B̄u, y = C̄x̄+ D̄u

where Ā = T−1AT , B̄ = T−1B, C̄ = CT and D̄ = D. These two systems are
said to be algebraically equivalent and the corresponding state transformation is called
a similarity transformation.

Note that the transfer functions of algebraically equivalent systems are identical.
This is proven below.



CHAPTER 5. SYSTEMS AND CONTROL THEORY 72

Ḡ(s) = C̄(sI − Ā)−1B̄ + D̄

= CT (sI − T−1AT )−1T−1B +D

= CT (sI − T−1A−1T )T−1B +D

= CT (sI)T−1B − CT (T−1A−1T )T−1B +D

= C(sI)B − CA−1B +D

= C(sI −A)−1B +D

= G(s)

5.2 Solutions of Linear Systems

5.2.1 LTV Systems and The Peano-Baker Series

Given the LTV system

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t)

we seek to find the solution to the homogeneous system

ẋ(t) = A(t)x(t), x(t0) = x0

The unique solution to the above unforced system is given by

x(t) = Φ(t, t0)x0

where

Φ(t, t0) = I+

∫ t

t0

A(s1)ds1+

∫ t

t0

A(s1)

[∫ s1

t0

A(s2)ds2

]
ds1+

∫ t

t0

A(s1)

[∫ s1

t0

A(s2)

[∫ s2

t0

A(s3)ds3

]
ds2

]
ds1+· · ·

is the state transition matrix of the system.
Of course, one never actual calculates the solution in this form as it’s intractable for

all but LTI systems. To prove that this solution is consistent with the ODE, we must
show that it satisfies the initial conditions and the ODE itself.

First, note that Φ(t0, t0) = I and x(t0) = Φ(t0, t0)x0 = x0. Thus, the initial condi-
tions are satisfied.

Next, note that the derivative of the state transition matrix is

Φ̇(t, t0) = A(t) +A(t)

∫ s1

t0

A(s2)ds2 +A(t)

∫ s1

t0

A(s2)

∫ s2

t0

A(s3)ds3ds2 + · · ·

= A(t)Φ(t, t0)

and hence x(t) = Φ̇(t, t0)x0 satisfies the homogeneous system ẋ = A(t)x.
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5.2.2 Properties of the State Transition Matrix

It was shown that the solution to the unforced (homogeneous) system ẋ(t) = A(t)x(t)
is x(t) = Φ(t, t0)x0 where the state transition matrix Φ(t, t0) has the properties (from
inspection of the Peano-Baker series)

Φ̇(t, t0) = A(t)Φ(t, t0)

Φ(t0, t0) = I

The state transition matrix additionally has the following properties:
(i) Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (this is known as the semi-group property. Note that

it is not necessary that t1 < t2.)
(ii) Φ(t, t0) is nonsingular for all t ≥ t0 and Φ−1(t, t0) = Φ(t0, t).
(iii) Φ̇(t0, t) = −Φ(t0, t)A(t) and also Φ(t0, t)

T = −AT (t)ΦT (t0, t).

Proof. (i) We know that x(t1) = Φ(t1, t0)x(t0) and x(t2) = Φ(t2, t0)x(t0). We also know
that x(t2) = Φ(t2, t1)x(t1). Thus,

x(t2) = Φ(t2, t0)x(t0)

= Φ(t2, t1)x(t1)

= Φ(t2, t1)Φ(t1, t0)x(t0)

and thus Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0).
(ii) We know from the previous property that Φ(t, t) = Φ(t, t0)Φ(t0, t). But from

the series form of Φ(t, t0) we also know that Φ(t, t) = I. Thus, rank(Φ(t, t0)) =
rank(Φ(t0, t)) = n and the inverse of Φ(t, t0) always exists and is equal to Φ(t0, t).

(iii) We know that I = Φ(t, t) = Φ(t, t0)Φ(t0, t) from the first property. Differentiat-
ing on both sides yields

Φ(t, t0)Φ̇(t0, t) + Φ̇(t, t0)Φ(t0, t) = 0

However, we already know that Φ̇(t, t0) = A(t)Φ(t, t0) and thus

Φ(t, t0)Φ̇(t0, t) +A(t)Φ(t, t0)Φ(t0, t) = 0

Φ(t, t0)Φ̇(t0, t) +A(t) = 0

Multiplying both sides by Φ−1(t, t0) = Φ(t0, t) and solving for Φ̇(t0, t) yields

Φ̇(t0, t) = −Φ(t0, t)A(t)

as desired.
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5.2.3 Solution of the Forced System

It is a property of linear systems that the solution in response to an input can be written
as the sum of the unforced (homogeneous) and forces responses.

We now seek to solve the linear, first-order system of ODEs

ẋ(t) = A(t)x(t) +B(t)u(t)

The solution will be shown to be

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

Proof. We assume a solution to the total system in the form of the unforced solution
but with unknown parameters, ie

x(t) = Φ(t, t0)k(t)

where k(t) ∈ Rn is to be determined. This method of solution is known as variation
of parameters.

Differentiating, we have that

ẋ(t) = Φ(t, t0)k̇(t) + Φ̇(t, t0)k(t)

Substituting this into the forced system, we have

Φ(t, t0)k̇(t) + Φ̇(t, t0)k(t) = A(t)Φ(t, t0)k(t) +B(t)u(t)

But we know that Φ̇(t, t0) = A(t)Φ(t, t0). Thus,

Φ(t, t0)k̇(t)+A(t)Φ(t, t0)k(t) = A(t)Φ(t, t0)k(t)+B(t)u(t) → Φ(t, t0)k̇(t) = B(t)u(t)

Solving for k̇(t) and integrating from t0 to t, we have

k(t) = k(t0) +

∫ t

t0

Φ(τ, t0)−1B(τ)u(τ)dτ

where τ is just a dummy variable for integration. To determine the integration
constant k(t0), recall that x(t0) = x0. Since x(t0) = Φ(t0, t0)k(t0) = x0, we have
k(t0) = x0.

The solution to the system is then

x(t) = Φ(t, t0)x0 + Φ(t, t0)

∫ t

t0

Φ(τ, t0)−1B(τ)u(τ)dτ

Since Φ(t, t0) is constant with respect to the integral, it can be pulled inside. Addi-
tionally, recall that Φ−1(τ, t0) = Φ(t0, τ) and thus we have Φ(t, t0)Φ(t0, τ) = Φ(t, τ) by
the semigroup property.
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The solution then becomes

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

as desired. The first term is the homogeneous (unforced) solution and the second is
the forced solution. Note that in order to determine how a system responds to any input,
one only needs to know the state transition matrix (solution to the unforced system).

5.3 Solution of LTI Systems

Recall that the state transition matrix is defined in general by the infinite Peano-Baker
series. Computation of this matrix is intractable; for LTI systems, however, the state
transition matrix can be readily computed.

Consider the unforced LTI system

ẋ(t) = Ax(t), x(t0) = x0

We seek to find the solution x(t) independently of the definition of the state transition
matrix (which defines the general solution for linear systems). Assume a solution in the
form of an infinite series as shown below (where t̃ = t− t0).

x(t̃) =
∞∑
i=0

ait̃
i

Substituting into the unforced system, we have

∞∑
i=0

iait̃
(i−1) = A

∞∑
i=0

ait̃
i

Since we seek to compute the coefficients ai in the assumed solution, we set the
coefficients of equal powers of t̃ equal, yielding

ai =
1

i!
Aia0, i = 1, . . . , n

But x(t = t0) = x(t̃ = 0) = x0 = a0 so

x(t) =

∞∑
i=0

Ai(t− t0)i

i!
x0 = eA(t−t0)x0

Note that the matrix exponential satisfies all the properties of the state transition
matrix.

Arriving at the above form of solution using Laplace transforms is much simpler.
Consider again the homogeneous system
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ẋ = Ax, x(0) = x0

Taking the Laplace transform yields sx(s) − x0 = Ax(s). Solving for x(s) yields
x(s) = (sI − A)−1x0 and the inverse Laplace transform of (sI − A)−1 is known to be
eAt. Thus, x(t) = eAtx0 (and since the system is LTI, we can shift time to account for
t0 6= 0).

5.3.1 The Matrix Exponential

The infinite series definition of the exponential eA of a matrix A is not the most con-
venient for computations. We can obtain a closed-form expression for the matrix expo-
nential by writing A using its eigendecomposition as A = SΛS−1 where S is the modal
matrix of eigenvectors of A and Λ is the diagonal matrix of eigenvalues of A.

From linear algebra, we know that a matrix A can be diagonalized if and only if it
has n linearly independent eigenvectors. Also, we know that a matrix has n linearly
independent eigenvectors if and only if it has n distinct eigenvalues. Thus, for a matrix
to be diagonalizable (or similar to a diagonal matrix Λ) then it must have n distinct
eigenvalues.

Using A = SΛS−1 to compute eA, we have

eA = I +A+
A2

2!
+ · · ·

= I + SΛS−1 +
1

2!
(SΛS−1)(SΛS−1) + · · ·

= SIS−1 + SΛS−1 +
SΛ2S−1

2!
+ · · ·

= S

[
I + Λ +

Λ2

2
+ · · ·

]
S−1

= SeΛS−1

where eΛ is simply diag{eλ1 , . . . , eλn}.
An alternative way to arrive at the same answer is to consider the state transforma-

tion x = Sz where S is again the matrix of eigenvectors of A. Recall that our system
is

ẋ = Ax, x(t0) = x0

We thus have the transformed system

ż = S−1ASz = Λz, z(t0) = S−1x0

Since the system written in this basis has a diagonal dynamics matrix, the solution
of each zi(t) is decoupled from the rest. Rewriting the system, we have
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ż1 = λ1z1 → z1(t) = eλ1(t−t0)z1(t0)

...

żn = λ1zn → zn(t) = eλn(t−t0)zn(t0)

Written compactly, we have

z(t) = eΛ(t−t0)z(t0)

Transforming the state back yields

x(t) = SeΛ(t−t0)S−1x0 = eA(t−t0)x0

which is the same solution as obtained previously.
Regardless of which way it’s computed, the matrix exponential arises because the

system can be decoupled into n first order systems by a suitable change of basis. The
question then is: what can be done in the case in which A cannot be diagonalized?

Jordan Canonical Form

If A cannot be diagonalized, then there must be eigenvalues with multiplicities greater
than one (and hence linearly dependent eigenvectors). In the case that A has k distinct
eigenvalues, we may write

J = S−1AS

where J ∈Mn is a “nearly-diagonal” matrix called the Jordan canonical form. This
matrix has the form

J =

J1 · · · 0
...

. . .
...

0 · · · Jk


where each Ji ∈ Mmi is a Jordan block corresponding to eigenvalue λi (which has

multiplicity mi) of the form

Ji =


λi 1 0 0

0 λi
. . . 0

0
. . .

. . . 1
0 0 0 λi


Note that

∑
imi = n. To find the columns of the matrix S, we write AS = SJ out

as
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A[S1, S2, · · · , Sk] = [S1, S2, · · · , Sk]

J1 · · · 0
...

. . .
...

0 · · · Jk


where each Si ∈ Cn×mi is a submatrix of S. Thus, we may write

ASi = SiJi, i = 1, . . . , k

Consider now a particular Jordan block Ji and write

A[si1, si2, · · · , simi ] = [si1, si2, · · · , simi ]


λi 1 0 0

0 λi
. . . 0

0
. . .

. . . 1
0 0 0 λi


Multiplying this out, we have

Asi1 = λisi1 → (A− λiI)si1 = 0

Asi2 = si1 + λisi2 → (A− λi)si2 = si1
...

Asimi = si(mi−1) + λisimi → (A− λi)simi = si(mi−1)

The vectors sij are called the generalized eigenvectors of A. These vectors are thus
solved for recursively starting with si1.

Now, consider application of the Jordan normal form to solving a homogeneous linear
system whose dynamics matrix has repeated eigenvalues. We first find the transition
matrix corresponding to a single Jordan block by making the state transformation x =
Sz. Thus, we have ż = S−1ASz = Jz and z(t0) = S−1x(t0) or

ż1

ż2
...
żn

 =


λ 1 0 0

0 λ
. . . 0

0
. . .

. . . 1
0 0 0 λ



z1

z2
...
zn


We may rewrite the above system as

ż1 = λz1 + z2

ż2 = λz2 + z3

...

żn = λzn
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Thus, we solve these first-order systems starting from the last equation and back-
substitute into the rest as follows.

The solution to the last equation is

zn(t) = eλ(t−t0)zn(t0)

Using this, the solution to equation n− 1 is then

żn−1 = λzn−1 + eλ(t−t0)zn(t0) → zn−1(t) = eλ(t−t0)zn−1(t0) + (t− t0)eλ(t−t0)zn(t0)

Continuing this process results in the general solution

zn−j(t) = eλ(t−t0)zn−j(t0) + (t− t0)eλ(t−t0)zn−j−1(t0) + · · ·+ (t− t0)n−1

(n− 1)!
eλ(t−t0)zn(t0)

for all j = 0, 1, · · · , n. Thus, we can write the solution to the whole system as

z(t) = eJ(t−t0)z(t0) =



1 (t− t0) (t−t0)2

2! · · · (t−t0)n−2

(n−2)!
(t−t0)n−1

(n−1)!

0 1 (t− t0)
. . .

. . . (t−t0)n−2

(n−2)!

0 0 1
. . .

. . .
...

...
. . .

. . .
. . .

. . . (t−t0)2

2!
0 · · · 0 0 1 (t− t0)
0 · · · 0 0 0 1


eλ(t−t0)z(t0)

This is the solution for a single Jordan block - how do we solve the whole system?
Recall from linear algebra that if the function of a matrix f(A) is represented by a
convergent series in A, and if A = A1⊕ · · · ⊕Ak is block-diagonal, then f(A) = f(A1)⊕
· · · ⊕ f(Ak).

Thus, if J = J1⊕· · ·⊕Jk, then eJ(t−t0) = eJ1(t−t0)⊕· · ·⊕eJk(t−t0) where each eJi(t−t0)

is computed as detailed above.

5.3.2 Discretization of LTI Systems

Given a continuous LTI system in state space form

ẋ = Ax+Bu, y = Cx+D

we may find the corresponding discrete-time system as follows. Assuming a zero-
order hold such that the input u(t) remains constant over a time interval T , the solution
to the continuous system over the sampling interval kT to (k + 1)T may be written as

x((k + 1)T ) = eA((k+1)T−kT )x(kT ) +

∫ (k+1)T

kT
eA((k+1)T−λ)Bu(kT )dλ
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Defining τ = (k + 1)T − λ, we change variables in the integral using dτ = −dλ; the
limits of integration must thus run from (k+ 1)T − kT = T to (k+ 1)T − (k+ 1)T = 0.

x((k + 1)T ) = eATx(kT )− u(kT )

∫ 0

T
eAτBdτ

Switching the limits of integration and writing x(kT ) = xk and u(kT ) = uk yields
the equivalent discrete-time system

xk+1 = Fxk +Guk

where

F = eAT , G =

∫ T

0
eAτBdτ

5.4 Stability

5.4.1 Internal Stability of Linear Systems

Given the unforced LTV state space system

ẋ(t) = A(t)x(t), x(t0) = x0

it’s clear that the equilibrium point is at x = 0.
For further discussion on stability, we must first recall

Vector Norms

The p-norm of a vector x ∈ Rn is defined to be

||x||p = (
n∑
i=1

|xi|p)1/p

For p = 2, this is the familiar Euclidean norm ||x||2 =
√
xTx. We may visualize these

norms by considering the shapes of regions of constant norm. For p = 1, this region is
a diamond; for p = 2 it is a circle. For p > 2 the shape approaches a square as p→∞.
Thus, the p =∞ norm is defined to be

||x||∞ = maxi|xi|

Matrix Norms

How can we measure the “size” of a matrix? Since matrices represent linear transforma-
tions which act on vectors, we can define the norm of a matrix by its action on a vector.
For any A ∈ Cm×n we thus define the induced p-norm to be
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||A||p = maxx 6=0
||Ax||p
||x||p

= max||x||p=1||Axp||

where the two definitions above are equivalent. It can be shown that:
For p = 1, the norm is equal to the maximum of the column sums, ie

||A||1 = max1≤j≤n

m∑
i=1

|aij |

For p = 2, the norm is equal to the maximum singular value of A (maximum eigen-
value of ATA), ie

||A||2 = λmax(ATA)

For p =∞, the norm is equal to the maximum of the row sums, ie

||A||1 = max1≤i≤m

n∑
i=1

|aij |

5.4.2 Types of Stability

Note that in all of the following definitions, stability is not dependent on the norm
chosen!

Uniform Stability

An LTV system is uniformly stable if there exists a finite, positive constant γ such that
for any x0, t0 the corresponding solution satisfies

||x(t)|| ≤ γ||x0||

Theorem: The LTV system is uniformly stable if and only if there exists a finite,
positive constant γ such that

||Φ(t, τ)|| < γ

for t ≥ τ . The constant γ determines the upper bound on the norm of the state.

Proof. ← Assume that such a constant exists. Then the solution x(t) = Φ(t, t0)x0

implies

||x(t)|| = ||Φ(t, t0)x0|| ≤ ||Φ(t, t0)||||x0|| ≤ γ||x0||

by Cauchy-Schwarz and thus the system is uniformly stable by the definition above.
→ Now, assume that the system is uniformly stable and show that such a constant

exists such that the norm of the state transition matrix is bounded (not proven in class).
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Uniform Exponential Stability

The LTV system is uniformly exponentially stable if and only if there exist finite, positive
constants γ, λ such that for all x0, t0 the solution satisfies

||x(t)|| ≤ γe−λ(t−t0)||x0||

Note that exponential stability implies that x(t) → 0 as t → ∞ while uniform
stability does not. The constant λ determines the rate of convergence of the norm of the
state.

Theorem: The LTV system is uniformly exponentially stable if and only if there
exist γ, λ such that

||Φ(t, τ)|| ≤ γe−λ(t−τ)

for all t ≥ τ . The proof (in the easy direction) is similar to that for uniform stability.

Exponential Stability of LTI Systems

Theorem: The LTI system ẋ = Ax, x(t0) = x0 is uniformly exponentially stable if and
only if all the eigenvalues of A have negative real parts.

Proof. ← Recall that the solution to the above system is x(t) = eA(t−t0)x0. If A is
diagonalizable then the theorem is clear from the fact that eA(t−t0) = SeΛ(t−t0)S−1

where Λ is diagonal.
We know that for a general LTI system

Φ(t, t0) = eA(t−t0) = SeJ(t−t0)S−1

since A is similar via S to the “near-diagonal” Jordan canonical form J = J1⊕· · ·⊕Jn.
Also note that eJ = eJ1 ⊕ · · · ⊕ eJn (see notes from the previous lecture).

We thus have

||Φ(t, t0)|| ≤ ||S||||eJ(t−t0)||||S−1|| ≤ γ1||eJ(t−t0)||γ2

Now, how to bound the norm of the exponential of the Jordan form? Recall that for
all i, the matrix eJi ∈ Cn×n has the form Teλi(t−t0) where T ∈ R×n is a matrix with
entries which are polynomials in (t− t0) of order at most n− 1 where n is the algebraic
multiplicity of eigenvalue λi.

If Re(λi) < 0 then since exponential decay dominates polynomial growth for large
values of t− t0, we have that each eJi(t−t0) is bounded by γ3 such that

||eJi(t−t0)|| ≤ γ3e
λi(t−t0)

Since this holds for all the Jordan blocks composing J , we have

||Φ(t, t0)|| ≤ γ1γ2γ3||eJ(t−t0)||
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and thus the LTI system (diagonalizable or not) is exponentially stable as long as
Re(λi) < 0 for all i.

Asymptotic Stability

An LTV system is uniformly asymptotically stable if (1) it is uniformly stable and (2)
Given any positive constant δ there exists a positive T such that for any x0, t0 the
solution to the system satisfies

||x(t)|| ≤ δ||x0||, t ≥ t0 + T

In other words, the system becomes uniformly stable after finite time T has elapsed.

5.4.3 The Routh Stability Criterion

Given the characteristic polynomial corresponding to the dynamics matrix A of an LTI
system,

pA(λ) = λn + a1λ
n−1 + · · ·+ an

the Routh Stability Criterion allows for determination of the number of unstable
(positive real part) roots based on an algebraic test.

First, note that a necessary (but not sufficient) condition for stability (all eigenvalues
have negative real parts) is that the coefficients of the characteristic polynomial are all
positive.

To check sufficiency, construct the Routh array and ensure that the first column is
positive.

5.4.4 Lyapunov Stability Theory

It has been motivated in class that the “energy” of a linear system is of a quadratic
form. Intuitively, the energy of a system must go to zero as time goes to infinity if the
system is stable. Lyapunov stability theory extends this idea to linear systems for which
energy is not readily defined.

Let the energy associated with a system having state x(t) at time t be

V (x, t) = xT (t)P (t)x(t)

where P (t) ∈ Rn×n is symmetric and positive semidefinite (so that the energy in the
system is always ≥ 0). We wish to study the rate of change of energy in the system and
thus compute

dV

dt
= ẋTPx+ xT Ṗ x+ xTPẋ

but we know that ẋ = Ax, so
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V̇ = ẋTPx+ xT Ṗ x+ xTPẋ

= xTATPx+ xT Ṗ x+ xTPAx

= xT
[
ATP + PA+ Ṗ

]
x

In order for the system to be stable, we require that the rate of change of its energy
must be negative. We state this formally (with additional conditions) as follows.

Uniform Stability

The linear system is uniformly stable if there exists a P (t) ∈ Rn which is continuously
differentiable, symmetric for all t and satisfies

1. ηI � P (t) � ρI, η, ρ > 0

2. AT (t)P (t) + P (t)A(t) + Ṗ (t) � 0∀t

Proof. ← Consider integrating the derivative of energy V of the system from time t0 to
time t to determine the change in energy between these times. This yields∫ t

t0

dV

dτ
dτ = V (t)− V (t0) = xT (t)P (t)x(t)− xT (t0)P (t0)x(t0)

where the definition of V (x, t) has been used. However, from above, we have the
expression

dV

dt
= xT (t)

[
AT (t)P (t) + P (t)A(t) + Ṗ (t)

]
x(t)

And thus the same integral yields∫ t

t0

dV

dτ
dτ =

∫ t

t0

xT (τ)
[
AT (τ)P (τ) + P (τ)A(τ) + Ṗ (τ)

]
x(τ)dτ

From the second condition above, the integrand is the quadratic form of a negative
semidefinite matrix and thus is nonpositive for all time; the integral must therefore be
nonpositive. Thus,

xT (t)P (t)x(t)− xT (t0)P (t0)x(t0) ≤ 0

and hence

xT (t)P (t)x(t) ≤ xT (t0)P (t0)x(t0)

for all t ≥ t0. From the first condition above, we then have
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xT (t)P (t)x(t) ≤ xT (t0)P (t0)x(t0)

ηx(t)Tx(t) ≤ ρx(t0)Tx(t0)

||x(t)|| ≤
√
ρ

η
||x(t0)||

which implies uniform stability.

Note that this is a sufficient condition for uniform stability of an LTV system, but
not a necessary one.

Exponential Stability

The linear system is exponentially stable if there exists a P (t) ∈ Rn which is continuously
differentiable, symmetric for all t and satisfies

1. ηI � P (t) � ρI, η, ρ > 0

2. AT (t)P (t) + P (t)A(t) + Ṗ (t) � −Q∀t

where Q is symmetric and positive definite. (Note that for a positive definite matrix
Q we have λmin(Q)||x||22 ≤ xTQx ≤ λmax(Q)||x2

2).
The above theorem applies to all linear system and provides a sufficient condition

for exponential stability. However, for an LTI system we have a stronger theorem as
follows.

Exponential Stability of LTI Systems

An LTI system is exponentially stable if and only if the
Lyapunov equation

ATP + PA = −Q

has a unique solution P for some positive definite matrix Q.
Notes:

1. The above theorem provides a recipe for checking for exponential stability: start
with some Q � 0 and solve for P . If any P isn’t symmetric positive semidefinite
then the system can immediately be declared unstable.

2. Q � 0 is arbitrary, so Q = I is often chosen.

3. The Lyapunov equation can be written as a Linear Matrix Inequality as follows:
find P such that ATP + PA ≺ 0.

4. The solution to the Lyaponuv equation for any Q is given by P =
∫∞

0 eA
T tQeAtdt.
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5.4.5 BIBO Stability

Consider the LTV system with zero initial conditions given by

ẋ(t) = A(t)x(t) +B(t)u(t)

y = C(t)x(t) +D(t)u(t)

Recall that the output of this system can be written as

y(t) =

∫ t

0
C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

The above system is uniformly BIBO stable if there exists a finite, positive constant
γ such that for every input u(t) the forced response y(t) satisfies

supt∈[0,∞]||yf (t)|| = γsupt∈[0,∞]||u(t)||

where sup differs from max in that it denotes the minimal upper bound.
Theorem: The LTV system is BIBO stable if and only if every entry of D(t) is

uniformly bounded and

supt≥0

∫ t

0
|gij(t, τ)|dτ <∞

for every entry gij(t, τ) of the matrix G(t, τ) = C(t)Φ(t, τ)B(τ) (this is the impulse
response function, the matrix which gets convolved with u(t) to produce the output
y(t)).

Proof. ← Compute the norm of the output as follows.

||y(t)|| = ||C(t)

∫ t

0
Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)||

≤
∫ t

0
||C(t)Φ(t, τ)B(τ)||||u(τ)||dτ + ||D(t)||||u(t)||

which results from the triangle and Cauchy-Schwarz norm inequalities. Now, define
µ = supt∈[0,∞]||u(t)|| and δ = supt∈[0,∞] so that

||y(t)|| ≤
(∫ t

0
||G(t, τ)||dτ + δ

)
µ

Note that

||G(t, τ)|| ≤
n∑

i,j=1

|gij(t, τ)|
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from the definition of the matrix p-norms (consider p = 1 or p =∞ which sum only
in one column or row, since the type of norm used does not affect the stability analysis).
Likewise, we may write ∫ t

0
||G(t, τ)||dτ ≤

∫ t

0

n∑
i,j=1

|gij(t, τ)|dτ

and thus

||y(t)|| ≤ sup

∫ t

0
||G(t, τ)||dτ + δ <∞

from the second condition above.

For LTI systems, we haveG(t, τ) = CeA(t−τ)B so the second condition above becomes

supt≥0

∫ t

0
|gij(t− τ)|dτ <∞

Further, for LTI systems we have the following theorem.
Theorem: An LTI system is BIBO stable if and only if every pole of every entry of

the transfer function G(s) = C(sI −A)−1B has strictly negative real part.
The important thing to note here is: all poles of the transfer functions are eigenvalues

of the system but not all eigenvalues of the system show up as poles of the transfer
functions!

Due to cancellation, it is possible for a system to be BIBO stable but not internally
(exponentially) stable. We conclude with the following theorem.

Theorem: An LTI system is BIBO stable if it is internally (exponentially) stable
(this implies that all the eigenvalues of the system have negative real part). The converse
is not true in general!

5.5 Controllability and Observability

All linear controllers involve state feedback and thus two important questions arise: (i)
Is it always possible to apply an input such that the state of the system is forced to some
desired state? (ii) Is it always possible to determine the state of the system (needed to
apply feedback) from the measured output?

A linear system (time-varying, in general) is said to be controllable if there exists a
finite time tf > t0 such that for any initial initial state x(t0) and any desired state x(tf )
there exists a finite finite/bounded control input u(t) defined on [t0, tf ] which transfers
the system state from x(t0) to x(tf ).

A linear system is said to be observable if there exists a finite tf > t0 such that for
any initial state x(t0), knowledge of the input u(t) and the measured output y(t) over
the interval [t0, tf ] is sufficient to determine x(t) on the interval.
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5.5.1 Controllability

A linear system is controllable over the interval [t0, tf ] if and only if the controllability
Grammian

Wc(t0, tf ) =

∫ t

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ

is nonsingular.

Proof. → Given the LTV system and and the desired final state x(tf ), we have for some
control input u(t) the solution

x(tf ) = Φ(tf , t0)x(t0) +

∫ tf

t0

Φ(tf , τ)B(τ)u(τ)dτ

We desire to solve the above equation for u(t) given x(t0) = x0. Defining F (τ) =
Φ(tf , τ)B(τ) and rearranging, we have

xf − Φ(tf , t0)x0 =

∫ tf

t0

F (τ)u(τ)dτ

In order for the above system to have a solution u(t), we know that F (t) must have
linearly independent rows. The condition for linear independence of the rows of F (t) is
that the matrix∫ tf

t0

F (τ)F T (τ)dτ =

∫ t

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ = Wc(t0, tf )

is nonsingular.

For an LTI system, we have that

F (τ) = eA(t0−τ)B

In order for the rows of F (t) to be linearly independent in general, we must show
that for some t

′ ∈ [t0, tf ]

rank
[
F (t

′
) Ḟ (t

′
) F (2)(t

′
) · · · F (n)(t

′
) · · ·

]
= n

or, in the LTI case,

rank
[
eA(t0−t

′
)B −eA(t0−t

′
)AB eA(t0−t

′
)A2B · · · (−1)n−1eA(t0−t

′
)An−1B · · ·

]
= n

Since we are free to choose any t
′ ∈ [t0, tf ], choose t

′
= t0. Then controllability is

determined by the rank of the controllability matrix as

rank
[
B AB A2B · · · An−1B · · ·

]
= n
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Recall that from Cayley-Hamilton, we have that pλ(A) = An + a1A
n−1 + a2A

n−1 +
· · ·+ anI = 0 and thus

An = −a1A
n−1 − a2A

n−2 − · · · − anI
An+1 = −a1A

n − a2A
n−1 − · · · − anA

...

An+j = −a1A
n+j−1 − a2A

n+j−2 − · · · − anAj

and thus every power of A after An−1 is a linear combination of lower powers of A.
Terms in the controllability matrix involving powers of A past An−1 thus do not affect
the rank of the controllability matrix! The condition for controllability of the LTI system
thus becomes

rank C(A,B) = rank
[
B AB A2B · · · An−1B

]
= n

where C(A,B) ∈ Rn×nm is the controllability matrix. For a SISO system, C(A, b) ∈
Rn×n must have nonzero determinant.

5.5.2 Observability

A linear (in general, time-varying) system is observable on the interval [t0, tf ] if and only
if the observability Grammian

Wo(t0, tf ) =

∫ tf

t0

ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0)dτ

is nonsingular.
Following a similar method as given for controllability, it can be shown that the

condition for observability of an LTI system is

rank O(A,C) = rank
[
CT ATCT (AT )2CT · · · (AT )n−1CT

]
= n

where O(A,C) is the observability matrix. Also note that we may write the condition
as

rank O(A,C) = rank OT (A,C)rank


C
CA
CA2

· · ·
Cn−1A

 = n
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5.5.3 Duality

Note that setting C = BT and A = AT in O(A,C) yields C(A,B); it is thus said that
observability and controllability are dual.

Let

ẋ = Ax+Bu, y = Cx

denote the primal system and let

ż = AT z + CTu, y = BT z

denote the dual system. Duality says that the primal system is controllable if the
dual system is observable (and vice-versa).

The following statements are equivalent for LTI systems:

• The pair (A,B) is controllable.

• The matrix Wc is nonsingular.

• rankC(A,B) = n

• The matrix [A−λI,B] ∈ Rn×2n has rank n for every eigenvalue λ of A (this is the
Popov-Bellevitch-Hautus or PBH test). Equivalently, the system is uncontrollable
iff there exists a left eigenvector x of A which lies in the nullspace of B, ie xTA =
λxT and xTB = 0.

• If all eigenvalues of A have negative real part, then the unique solution to the
Lyapunov equation AWc +WcA

T = −BBT is positive-definite and given by Wc =∫∞
0 eAτBBT eA

T τdτ . Thus, for a stable system we can calculate the controllability
Grammian using this Lyapunov equation (for which there are methods of solution).
Note that this comes from taking the derivative of the matrix Wc and solving for
the steady-state (ie Ẇc = 0) solution of the resulting Lyapunov equation.

5.5.4 Lyapunov Stability (updated)

Given an LTI system, the following conditions are equivalent:

• The system is asymptotically stable.

• The system is exponentially stable.

• The real parts of all eigenvalues of A are negative.

• The Lyapunov equation PA+ATP = −Q has a unique, positive-definite solution
P for any positive-definite matrix Q. The solution is given by P =

∫∞
0 aA

T tQeAtdt
(it’s clear that if the real parts of λ(A) are nonnegative then this solution will be
unbounded!)



CHAPTER 5. SYSTEMS AND CONTROL THEORY 91

• There exists a matrix P � 0 for which the inequality ATP + PA ≺ 0 (there are
multiple solutions P and if none are positive definite then the system is unstable!)

• For every pair (A,B) that is controllable, there is a unique solution P � 0 to
the Lyapunov equation AP + PAT = −BBT (Note that BBT is always positive
semi-definite since xTBBTx = (BTx)T (BTx) = ||BTx||22 ≥ 0). The solution to
this equation is the controllability grammian, which is guaranteed to be positive
definite for a controllable system.

• For every pair (A,C) that is observable, there is a unique solution P � 0 to the
Lyapunov equation ATP +PA = −CTC (Note that CTC is always positive semi-
definite since xTCTCx = (Cx)T (Cx) = ||Cx||22 ≥ 0). The solution to this equation
is the observability grammian, which is guaranteed to be positive definite for an
observable system.

Note that if A is not symmetric, its quadratic form can still be defined by writing
A = 1

2(A+AT )+ 1
2(A−AT ) where (A+AT ) is symmetric and (A−AT ) is antisymmetric

(or skew-symmetric). It can be shown that xT (A−AT )x = 0 and thus we have xTAx =
xT (A+AT )x (to see this, note that for some antisymmetric matrix R, we have (xTRx) =
(xTRx)T = xTRTx = −xTRx and thus xTRx = 0).

5.5.5 Equivalent System Representations

Recall that the linear system

ẋ = Ax+Bu, y = Cx

is said to be similar to the system

˙̄x = Āx̄+ B̄u, y = C̄x̄

where T̄ = T−1AT , B̄ = T−1B, and C̄ = CT via the state transformation x = T x̄
where T is some nonsingular matrix. For such systems, we have G(s) = C(sI−A)−1B =
C̄(sI − Ā)−1B̄, that is, the transfer function of the system is the same.

Theorem: Observability and controllability properties are invariant under equiva-
lence tranformations.

Proof. Consider the controllability matrix C(A,B). For the original and transformed
systems, this is

C(A,B) =
[
B AB A2B · · · An−1B

]
C(Ā, B̄) =

[
B̄ ĀB̄ Ā2B̄ · · · Ān−1B̄

]
Note that since Ā = T−1AT , we have Āk = (T−1AT )(T−1A) · · · (T−1AT ) = T−1AkT

and thus ĀkB̄ = (T−1AkT )(T−1B) = T−1AkB and so
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C(Ā, B̄) =
[
B̄ ĀB̄ Ā2B̄ · · · Ān−1B̄

]
=
[
T−1B T−1AB T−1A2B · · · T−1An−1B

]
= T−1C(A,B)

Assume that the original system is controllable. Recall that for two matrices A,B
with A invertible, we know that rank (AB) = rank B, that is, multiplication by an
invertible matrix does not change the rank. Since rank C(Ā, B̄) = rank T−1C(A,B) =
rank C(A,B) = n, we have that the transformed system must also be controllable.

Theorem: Suppose that the LTI system {A,B,C} is such that rank C(A,B) = r <
n, that is, the system is uncontrollable. Then there exists an equivalence transformation
T such that

Ā =

[
Āc Ācc̄
0 Āc̄

]
, B̄ =

[
B̄c
0

]
, C̄ =

[
C̄c C̄c̄

]
where for a system with n states, m inputs and k outputs,

Ac ∈ Rr×r

Ācc̄ ∈ Rr×n−r

Āc̄ ∈ Rn−r×n−r

B̄c ∈ Rr×m

C̄c ∈ Rk×r

C̄c̄ ∈ Rk×n−r

The following statements about this realization hold.

• The pair (Āc, B̄c) is controllable, that is, rank C(Āc, B̄c) = r.

• The states of the transformed system {Ā, B̄, C̄} are separated into controllable and
uncontrollable with x̄ = [x̄Tc , x̄

T
c̄ ]T where x̄c ∈ Rr and x̄c̄ ∈ Rn−r.

• The transfer function satisfies G(s) = C(sI − A)−1B = C̄c(sI − Āc)−1B̄c. Note
that since (sI − A)−1 involves an nth order polynomial and (sI − Āc) involves an
rth order polynomial (where r < n) there must be n− r cancellations.

Writing out the equations for the transformed system using this realization, we have

˙̄xc = Ācx̄c + Ācc̄x̄c̄ + B̄cu

˙̄xc̄ = Āc̄x̄c̄
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The solution to the second system of equations is clearly x̄c(t) = eĀc̄tx̄c(0) and thus
the control input has no effect on these states!

Since the original and transformed state vectors are related by the transformation

x̄ = T−1x, we may write T =

[
R1

R2

]
and thus x̄ =

[
x̄c
x̄c̄

]
=

[
R1x
R2x

]
which makes it clear

that the controllable and uncontrollable states are linear combinations of the original
states.

Theorem: Suppose that the LTI system {A,B,C} is such that rank O(A,C) = r <
n, that is, the system is unobservable. Then there exists an equivalence transformation
T such that

Ā =

[
Āo 0
Āoō Āō

]
, B̄ =

[
B̄o
B̄ō

]
, C̄ =

[
C̄o 0

]
where for a system with n states, m inputs and k outputs,

Ao ∈ Rr×r

Āoō ∈ Rn−r×r

Āō ∈ Rn−r×n−r

B̄o ∈ Rr×m

B̄ō ∈ Rn−r×m

C̄o ∈ Rk×r

The following statements about this realization hold.

• The pair (Āo, C̄o) is observable, that is, rank O(Āc, C̄o) = r.

• The states of the transformed system {Ā, B̄, C̄} are separated into observable and
unobservable with x̄ = [x̄To , x̄

T
ō ]T where x̄o ∈ Rr and x̄ō ∈ Rn−r.

• The transfer function satisfies G(s) = C(sI − A)−1B = C̄c(sI − Āc)−1B̄c (again,
cancellation must occur).

Writing out the equations for the transformed system using this realization, we have

˙̄xo = Āox̄o + B̄ou

˙̄xō = Āoōx̄o + Āōx̄ō + B̄ōu

y = C̄ox̄o

It’s thus clear from the output equation that x̄ō contributes nothing to the output
and thus cannot be observed! Again, we can show that the observable and unobservable
states are linear combinations of the states of the original system.

There are four types of states: those which are controllable, those which are observ-
able, those which are controllable and observable and those which are neither.
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Minimal Realizations

A realization is called minimal if it has the smallest matrix A among all triples {A,B,C}
which satisfyG(s) = C(sI−A)−1B (of course, there are infinite such minimal realizations
via similarity so this representation is not unique).

Theorem: A realization is minimal if and only if it is both controllable and observ-
able.

If {A1, B1, C1} and {A2, B2, C2} are two minimal realizations of a transfer function
G(s), there exists a unique, invertible matrix T such that

A2 = T−1A1T, B2 = T−1B1, C2 = C1T

Furthermore, T is given by either

T = C1C
T
2 (C2C

T
2 )−1

T = (OT2 O2)−1OT2 O1

where we note that the first equation involves the right pseudoinverse C†2 = CT2 (C2C
T
2 )−1

and the second equation involves the left pseudoinverse O†2 = (OT2 O2)−1OT2 . For a SISO
system, these matrices are square and so the expressions reduce to

T = C1C
−1
2

T = O−1
2 O1

5.6 State Feedback Control

Assuming that the state of the system

x = Ax+Bu, y = Cx

is known exactly, we design a feedback controller ufb = −Kx; letting uext = ν be a
reference or disturbance input, the total input is then u = −Kx+ ν and the closed-loop
system becomes

x = (A−BK)x+Bν, y = Cx

The dynamics of the system are thus governed by the matrix Acl = A − BK, re-
ferred to as the closed-loop dynamics matrix. Our choice of the gain matrix K thus
determines how the system behaves.
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5.6.1 Popov-Bellevitch-Hautus Controllability Test

The Popov-Bellevitch-Hautus (PBH) test states that the pair (A,B) is controllable if
every eigenvector of AT (left eigenvector of A) is not in the nullspace of BT (the left
nullspace of B).

Theorem: If the pair (A,B) is controllable, then the pair (A+µI,B), µ ∈ R is also
controllable.

Proof. The matrix A+ µI has the same eigenvectors as A and eigenvalues each shifted
by µ. If (A,B) is controllable (passes the above PBH test) then since the eigenvectors
do not change, (A+ µI,B) must also be controllable.

Since (A+µI,B) is controllable, we know that the solution to the Lyapunov equation

(µI +A)W +W (µI +A)T = −BBT

exists and is positive definite (specifically, it is the controllability grammian). Ex-
panding this expression and noting that W is nonsingular, we find the following.

(µI +A)W +W (µI +A)T = −BBT

AW +WAT +BBT = −2µW

W−1AW +AT +W−1BBT = −2µI

W−1A+ATW−1 +W−1BBTW−1 = −2µW−1

Letting P = W−1 (which is also positive definite since the eigenvalues of P are the
reciprocals of the eigenvalues of W ), this becomes

PA+ATP + PBBTP = −2µP

We can write this equation as (???)

P (A−BK) + (A−BK)TP = −2µP

Since P � 0, then 2µP � 0; since we know that there exists a positive definite
solution P = W−1 to this Lyapunov equation, it follows that A−BK is stable.

Theorem: If the LTI system is controllable, then it is possible to find a feedback
controller u = −Kx which places all eigenvalues of the closed-loop system in the com-
plex semiplane Re(s) ≤ µ. If the system is not controllable, then there exists a state
representation for which the state vector is partitioned into the controllable states x̄c
and the uncontrollable states x̄c̄ with dynamics

˙̄xc = Ācx̄c + Ācc̄x̄c̄ + B̄cu

˙̄xc̄ = Āc̄x̄c̄
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Since the input u cannot affect the uncontrollable states x̄c̄, we can never choose
a gain matrix which stabilizes these states. The best we can do is to design a state
feedback controller for the controllable part barxc by treating the term d = Ācc̄x̄c̄ as a
disturbance. Since (Āc, B̄c) is controllable, we can design a controller u = −Kcx̄c which
places the place the poles of matrix (Āc − B̄cKc) and thus determines the response of
the controllable part.

If Ācc̄ is a stable matrix then the uncontrollable system is stable; in this case we say
that the total system is stabilizable rather than controllable.

Theorem: If the LTI system is stabilizable (that is, the uncontrollable states are
stable) then it is always possible to design a feedback controller u = −Kx such that the
closed-loop dynamics matrix (A−BK) is stable.

5.6.2 State Feedback for SISO Systems

Consider the SISO system

x = Ax+ bu, y = cTx

having the transfer function (assumed here to be strictly proper) given by

g(s) =
y(s)

u(s)
=

b1s
n−1 + b2s

n−2 + + bn
sn + a1sn−1 + a2sn−2 + + an

We can always put such a system into controllable form as follows.

ẋc = Acxc + bcu, y = cTc xc

where

Ac =


−a1 · · · −an−1 −an

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 , bc =


1
0
...
0

 , cc =
[
b1 b2 · · · bn

]

Assume a control law u = −kTc xc + ν so that the closed-loop system becomes ẋ =
Aclxc + bcν where Acl = (Ac − bckTc ). Its clear that

bck
T
c =

1
...
0

 [kc1 · · · kcn
]

=


kc1 · · · kcn
0 · · · 0
...

. . .
...

0 · · · 0


and thus



CHAPTER 5. SYSTEMS AND CONTROL THEORY 97

A− bckTc =


−a1 − kc1 · · · −an−1 − kcn−1 −an − kcn

0 · · · 0 0
...

. . .
...

...
0 · · · 1 0


We see that Acl is still in controllable form; thus, the characteristic polynomial of

the closed-loop system is

sn + (a1 + kc1)sn−1 + (a2 + kc2)sn−2 + · · ·+ (an + kcn)

Since the coefficients of the characteristic polynomial of the closed-loop transfer func-
tion are functions of the eigenvalues of Acl, we can choose the coefficients of kc to place
the eigenvalues of Acl.

Assume that we desire to place the closed-loop eigenvalues at the locations λ̂1, · · · , λ̂n;
the desired characteristic polynomial is thus

(s− λ̂1)(s− λ̂2) · · · (s− λ̂n) = sn + α1s
n−1 + · · ·+ αn

To place the eigenvalues as such, it follows that

α1 = a1 + kc1 → kc1 = α1 − a1

...

αn = an + kcn → kcn = αn − an

and thus kc = (α − a) achieves the desired pole placement. Its very important to
realize that state feedback does not alter the zeros of the system.

Of course, this only works for systems in controllable form, whereas most systems are
not given in controllable form; we thus seek a means of designing a feedback controller
for any controllable system. Recall that we can always find a transformation T which
puts a given system into controllable form via the state transformation x = Txc. If we
design a feedback controller uc = −kcxc for the transformed system then the feedback
controller for the original system is simply u = −kcT−1x. We thus must determine the
transformation T which puts the system into controllable form.

Recall that any minimal realization can be transformed to another minimal realiza-
tion via the transformation matrix T = C1C

†
2 = C†1C2 or in the SISO case T = C1C

−1
2 =

C−1
1 C2. For the purposes of controller design, we assumed that the state of the system

could be measured precisely (ie, that the system is observable) and it is required that
the system be controllable. We have thus assumed that the system is minimal (both
controllable and observable). It follows that we may transform the original system into
controllable form using the transformation T = CC−1

c where C and Cc are the control-
lability matrices of the original and controllable realizations, respectively.

It can be shown that
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C−1
c = ∆T =



1 a1 a2 · · · an−1

. . .
. . .

. . .
...

. . .
. . . a2

. . . a1

1


and thus T = C∆T and finally kT = (α − a)T∆−TC−1. Obviously, if the system is not
controllable then C will not be invertible.

5.6.3 SISO Pole Placement using Lyapunov Equation

The method given above for placing the eigenvalues of a closed-loop SISO system using
state feedback is not the only way of choosing the gain vector k. Alternatively, assume
that the closed-loop dynamics matrix is similar to a second matrix F which has the
desired eigenvalues via some nonsingular matrix T , ie

(A− bkT ) = TFT−1

Since Acl and F are similar, they have the same eigenvalues. We thus seek to deter-
mine k and T such that this similarity holds. Expanding out this equation yields

AT − TF = bkTT = bk̄T

where we have defined k̄T = kTT . This is thus a Lyapunov equation of the form
AX +XB = −C where A = A, B = F and C = −bk̄T . If we are given k̄ then we can
solve the above equation for T subject to the conditions of the following theorem.

Theorem: If A and F have no eigenvalues in common then the above Lyapunov
equation can be solved for a unique, nonsingular T if (A, b) is controllable and (F, k̄T )
is observable.

The theorem suggests the following procedure for eigenvalue placement using the
above formula:

• First, select F ∈ Rn×n which has the desired eigenvalues. Note that F can share
no eigenvalues with A (all the poles must be moved).

• Second, select k ∈ Rn such that the pair (F, k̄T ) is observable.

• Finally, solve AT − TF = bk̄T for T and conclude that kT = k̄TT−1.

The simplest way to choose F and k̄ such that the pair (F, k̄TT ) is observable is to
choose F to be the diagonal matrix of desired eigenvalues and k̄ to be the vector of all
ones. Note that if any of the desired eigenvalues are complex, choosing F in this way
will result in a complex gain vector. Instead, choose F to be real block diagonal where
a complex eigenvalue λ = α+ βi shows up in the 2× 2 block
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[
α β
−β α

]

5.7 Controller Design for MIMO Systems

Consider the MIMO system

x = Ax+Bu, y = Cx

where B ∈ Rn×m and u ∈ Rm . Recall that pole placement for SISO systems was a
matter of determining the gain vector k ∈ Rn which placed the eigenvalues of the closed-
loop dynamics matrix at the desired locations. Since there were n scalar gains and the
characteristic polynomial was or order n, the gain vector could be chosen uniquely.

In MIMO systems (specifically multi-input systems, since the output does not affect
controller design) the gain matrix K ∈ Rm×n cannot be uniquely specified given the
desired eigenvalue locations. However, the advantage to there being infinite solutions to
this problem is that one can both place the poles and alter the response in other ways.

Note that if a system is controllable using only one of its inputs, ie rank{C(A, bi)} =
n, then it is controllable using all of them. This is evident from the fact that when
additional inputs are used, the controllability matrix grows in column dimension; even
when the full matrix C(A,B) ∈ Rn×mn is used, it still has full row rank n. We have the
following theorem which facilitates controller design for MIMO systems.

Theorem: All eigenvalues of Acl = (A − BK) can be placed arbitrarily with some
K ∈ Rm×n iff the pair (A,B) is controllable.

Cyclic Design for MIMO Systems

The simplest way to choose a feedback law which accomplishes eigenvalue placement is
to use the cyclic design method.

Theorem: Let A be cyclic (having Jordan form with one block associated with each
distinct eigenvalue). If the pair (A,B) is controllable then for (almost) any v ∈ Rm the
pair (A,Bv) is controllable.

Using the preceding theorem, one can place the poles of the system ẋ = Ax + b̄w
where b̄ = Bv and w = −kTx. The closed-loop system is thus ẋ = (A − BK)x where
K = vkT . The effect of v is to distribute the required input among multiple actuators.
For example, choosing v = ei uses only the ith actuator while choosing v to be the vector
of all ones evenly distributes control (???).

Lyapunov Method for MIMO Systems

We can also choose K using the Lyapunov method previously introduced for SISO sys-
tems.
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• First, select F ∈ Rn×n which has the desired eigenvalues. Note that F can share
no eigenvalues with A (all the poles must be moved).

• Second, select K̄ ∈ Rm×n such that the pair (F, K̄) is observable.

• Finally, solve AT − TF = bK̄ for the unique T and conclude that K = K̄T−1.

• If T is singular, choose a different K̄ and start over.

(Questions: 1) If there are infinite solutions to the general problem of MIMO con-
troller design, how is T here unique? 2) Why is it possible for T to be singular in this
case but not in the SISO case?)

Note again that state feedback cannot affect the zeros of the system, which also play
a large role in the reponse. For example, a system with a positive zero is called non-
minimal phase; the result is that such a system typically moves in the opposite direction
at first in the case of a step input.

5.7.1 Disturbance Rejection

Given the linear system

ẋ = Ax+Bu, y = Cx

assume that the input is a constant (step) disturbance of unknown magnitude which
we want to reject. Thus, we desire to drive the output to zero in the presence of this
input. This can be accomplished by defining the additional state xn+1 =

∫ t
0 ydτ so that

this state has dynamics ẋn+1 = y. The augmented system is then[
ẋ

ẋn+1

]
=

[
A 0
C 0

] [
x

xn+1

]
+

[
B
0

]
u

We then design a feedback controller for the augmented system so that the system
is stable. At equilibrium, we have ẋn+1 = y = 0 and thus the system will reject the
disturbance as desired.

5.8 Optimal Control

Given the LTI system

ẋ = Ax+Bu, y = Cx

we wish to find the feedback gain matrix K for which the control u = −Kx minimizes
the quadratic cost function

J =

∫ T

0
(xTQx+ uTRu)dt
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called the performance criterion where Q � 0 and R � 0 are weighting matrices and
T is the terminal time. The solution to the optimal control problem is given by

K(t) = R−1BTP (t)

where P (t) is the solution to the Ricatti equation

−Ṗ (t) = ATP (t) + P (t)A+ P (t)BR−1BTP (t) +Q

Using the fact that P (T ) = 0, the above equation is solved starting with t = T and
going back in time to find P (t) for all t < T . However, in the case where T →∞ it can
be shown that P (t) becomes a constant matrix and thus P = 0. The Ricatti equation
thus becomes an algebraic (instead of differential) equation given by

PA+ATP − PBR−1BTP +Q = 0

5.9 Observers

In practice, we can never measure the state of a system directly. Even in the rare case in
which C is invertible, solving directly for the state as x = C−1y is problematic because
C is often incorrectly modeled.

Instead, we seek to design a structure called an observer which produces and estimate
of the state of the system given the control input and measured output.

One possibility for an observer is to simply mimic the structure of the system itself.
In general, this would give

ẋ(t) = A(t)x(t) +B(t)u(t)

˙̂x(t) = A(t)x̂(t) +B(t)u(t)

Defining the estimation error to be e(t) = x(t)− x̂(t), we have

ė(t) = A(t)e(t)

Clearly, this observer has some issues. First, the error only converges to zero if the
system has stable open-loop dynamics. Second, the rate of convergence of the error to
zero depends entirely on the open-loop eigenvalues and thus we have no control over
this.

In order to solve these problems, we need to make use of the measured output which
provides information about the state. We thus feed back the difference in the measured
and expected outputs multiplied by a gain matrix L to yield the observer structure

˙̂x = Ax̂+Bu+ L(y − ŷ)

= Ax̂+Bu+ L(y − Cx̂)

= (A− LC)x̂+Bu+ Ly
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In this case, the estimation error dynamics become

ė = (A− LC)e

and thus we may influence the convergence of the error to zero by choosing the gain
matrix L to place the eigenvalues of the closed-loop observer matrix Ao = A − LC as
desired. How do we choose L to accomplish this, though?

Note that det(sI −Ao) = det(sI −AT ) = det(sI − (AT −CTLT )) and thus the task
of choosing an observer gain L is identical to that of choosing a gain matrix K in the
state feedback problem with the substitutions A = AT , B = CT and K = LT . In the
SISO case, we thus have

lT = (α− a)TCcC
−1(AT , cT ) = (α− a)TOoO

−1(A, c)

by duality of controllability and observability. Of course, we can also use the Lya-
punov method to accomplish SISO pole placement. For MIMO systems we may also use
any of the methods discussed for controller designs (cyclic method, Lyapunov method,
optimal control) but with the above substitutions from duality.

Recall that the structure of the SISO observer is

˙̂x = Aox̂+ bu+ ly, ŷ = Cx̂

where ŷ is the output from the observer. Taking the Laplace transform of both sides
of the observer dynamics, we obtain sX̂(s) = AoX̂(s) + lY (s) + bU(s); solving for X̂(s)
yields X̂(s) = (sI −Ao)−1bU(s) + C(sI −Ao)−1lY (s) and thus

Ŷ (s) = C(sI −Ao)−1bU(s) + C(sI −Ao)−1lY (s)

Since this is a linear system, we know that the output is a linear combination of
the transformed inputs; thus, we may set Y (s) = 0 or U(s) = 0 in order to solve
for the transfer functions relating the output to the measurement or the control input,
respectively. These are then simply

Gy(s) =
Ŷ (s)

Y (s)
= C(sI −Ao)−1l

Gu(s) =
Ŷ (s)

U(s)
= C(sI −Ao)−1b

Note that both the measured output and input are, in practice, commonly afflicted
by high-frequency noise. By choosing the eigenvalues of Ao to be very negative, we make
the system have a high bandwith; as a result, high frequency noise may be amplified if
the observer gain is too big! The gain is thus limited in practice by the noise in these
inputs to the observer.
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5.9.1 Reduced Order Observers

Often, one or more outputs in a MIMO system directly measure states; that is, C is
of the form C = [Ip0]. Rather than using an nth order observer, we can construct an
observer of reduced order n− p as follows.

Partition the state vector as x = [xTa , x
T
b ]T where xa ∈ Rp corresponds to those

states which are measured directly. We thus only need to estimate xb ∈ R(n−p). The
state equations can be written as

[
ẋa
ẋb

]
=

[
Aaa Aab
Aba Abb

] [
xa
xb

]
+

[
Ba
Bb

]
u

The states we wish to estimate thus have the dynamics

ẋb = Abbxb +Bbu+Abaxa

Since xa is known at all times, we may treat it like a second input. The dynamics of
the measured states are

ẋa = Aaaxa +Aabxb +Bau

We wish to express xb as a function of the known signals xa and u. This yields

yb = Aabxb = ẋa −Aaaxa −Bau

Making the substitutions A = Abb , Bu = (Abaxa + Bbu), C = Aab and y = yb, the
observer for xb has the structure

ẋb = (Abb − LAab)x̂b + (Abaxa +Bbu) + Lyb

= (Abb − LAab)x̂b + (Abaxa +Bbu) + L(x̂a −Aaaxa −Bau)

The fact that the derivative of the measurement y = xa shows up in the above
dynamics is an implementation problem, though. We can solve this problem by defining
a new state z = x̂b − Ly such that the observer can be written as

ż = (Abb − LAab)z + [(Abb − LAab)L+ (Aba − LAaa)]y + (Bb − LBa)u
= Aoz + Loy +Bou

where y = xa and u are known. The estimate of the state xb is then computed as

x̂b = z + Ly

Additionally, it can be shown that the estimation error of the reduced order observer
is described by the equation
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ė = (Abb − LAab)e

Finally, note that

Z(s) = (sI −Ao)−1Loy + (sI −Ao)−1Bou

and thus

X̂b(s) =
[
(sI −Ao)−1Lo + L

]
y + (sI −Ao)−1Bou

Note that L shows up as a direct feedthrough term in this representation.
It was previously shown how to design a reduced order observer for a system having

C = [Ip0] describing its measured output. However, what if C is not given in this
form? We seek a state transformation which will accomplish this so that we can design
a reduced order observer in the same manner.

Define the state vector x̄ to be

x̄ =

[
y

Ĉx

]
=

[
C

Ĉ

]
x = Ux

where C ∈ R(n−p)timesn is any matrix chosen such that the transformation U is
nonsin- gular. In this representation, the first p states are thus the outputs of the
original system. The transformed system is then

˙̄x = UAU−1x̄+ UBu, y = CU−1x̄ = [Ip0]x̄

Now, we can design an observer for the last (n− p) states of x̄ as before.

5.9.2 Observer Sensitivity

Recall that a system and its corresponding full-order observer have the dynamics

ẋ = Ax+Bu

˙̂x = (Â− LĈ)x̂+ B̂u+ Ly

where Â, B̂ and Ĉ denote the models of A, B and C used in the observer. If
these models coincide with the actual system then we have that the estimation error is
governed by the equation

ė = (A− LC)e

If the model is imperfect, though, then we dont get the right cancellation to produce
this equation and so the observer wont work well. Further, it can be shown that a
reduced order observer is actually more sensitive to such modeling imperfections than is
a full order observer.
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5.9.3 Disturbance Estimation

Suppose that the state space system subject to disturbances is given as

ẋ = Ax+Bu+ Fd

where d is the disturbance and F is a matrix which relates how the disturbances
affect the state (it can be equal to B). Further, assume that we know a model of the
disturbance dynamics given by

ḋ = Add

Defining the augmented state vector z = [xT , dT ]T we may write[
ẋ

ḋ

]
=

[
A F
0 Ad

] [
x
d

]
+

[
B
0

]
u, y =

[
C 0

] [x
d

]
where we let Ā, B̄ and C̄ denote the new system matrices. Assuming Ā, C̄ is

observable we may write an observer for z in the usual manner, ie

ż = (Ā− LC̄)z + B̄u+ Ly

The only question is how to model the disturbance dynamics. Some examples are
given below.

• Assume d is a step (constant) disturbance of unknown magnitude, ie d = C. Define
z1 = d = C and thus ż1 = 0.

• Assume d is a ramp disturbance d = d0 + d1t with d0, d1 unknown. Define z1 = d
and z2 = ḋ = d1 so that ż1 = ḋ = z2 and ż2 = d̈ = 0.

• Assume d is a harmonic of frequency ω but unknown amplitude given by d =
A sin (ωt+ φ). Define z1 = d and z2 = ḋ so that ż1 = z2 and ż2 = d̈ = −ω2z1.

Note that we can (in theory, but not usually in practice) reject disturbances caused
by measurement noise n fed through matrix R in a similar way if the dynamics ṅ = Ann
are known, resulting in the augmented system[

ẋ
ṅ

]
=

[
A 0
0 An

] [
x
n

]
+

[
B
0

]
u, y =

[
C R

] [x
n

]

5.10 Compensators and The Separation Principle

Thus far, we have designed a state feedback controller assuming the state of the system
was known, resulting in the closed-loop dynamics

ẋ = (A−BK)x+Bν, y = Cx
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However, we have also designed an observer to estimate the state of the system;
the state feedback input is thus u = −Kx̂ and thus the closed-loop system using state
feedback based on the observer estimate is

ẋ = Ax−BKx̂+Bν ˙̂x = (A− LC −BK)x̂+Bν + Ly

Using the fact that e = x − x̂, we can write these closed-loop equations in terms of
the state and the estimation error as

ẋ = Ax−BK(x− e) +Bν = (A−BK)x+BKe+Bν

ẋ− ė = (A− LC −BK)(x− e) +Bν + Ly → ė = (A− LC)e

It follows that

[
ẋ
ė

]
=

[
(A−BK) BK

0 (A− LC)

] [
x
e

]
+

[
B
0

]
ν, y =

[
C 0

] [x
e

]
We know that the determinant of a block triangular matrix is the product of the

determinants of its diagonal blocks. Denoting the above dynamics matrix by Acl, we
thus have

det(sI −Acl) = det(sI − (A−BK))det(sI − (A− LC))

which proves that the eigenvalues of the closed-loop system are the eigenvalues of
the controller plus the eigenvalues of the observer. This is known as the separation
principle. We may thus design a controller and an observer separately and put them
together without them affecting one another.

We denote the combination of a controller and an observer a compensator ; it trans-
forms the measured output of the system into a feedback control input. Its transfer
function is given by

Gcomp(s) =
U(s)

Y (s)
= −K[sI − (A− LC −BK)]−1L

Finally, note that the closed-loop transfer function of a system with a compensator
is

Gcl(s) =
Y (s)

ν(s)
= C(sI − (A−BK))−1B

This corresponds to a system of order n despite the fact that the compensator is
of order 2n - the n observer poles were thus cancelled! Recall that a transfer function
describes steady-state (non-transient, ie zero initial conditions) behavior. During the
transient phase there is some estimation error, but after convergence the observer poles
cancel and the system looks like an nth order system!
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5.11 Frequency Domain Control Theory

5.11.1 Impulse Response

For a linear SISO system, an input signal u can be written using unit-area pulse signals
(dirac deltas) as

u∆(t) =

∞∑
k=0

∆u(k∆)δ∆(t− k∆), ∀t ≥ 0

since the dirac-delta has unit area, width ∆ and height 1
∆ .

For each τ ≥ 0, let g∆(t− τ) denote an output corresponding to the input δ∆(t− τ)
such that δ∆(t− τ)⇒ g∆(t− τ).

Due to linearity, the output y∆(t) from input u∆(t) above can be written as

y∆(t) =

∞∑
k=0

∆u(k∆)g∆(t− k∆), ∀t ≥ 0

In the limit as ∆→ 0, u∆(t)→ u(t)) and thus

lim∆→0y∆(t) =

∫ ∞
0

u(τ)g(t− τ), ∀t ≥ 0

where τ = k∆ and

g(t− τ) = lim∆→0g∆(t− τ)

This function g maps an input Dirac pulse (of zero length but unit area) at time τ
to an output at time t.

If the system is causal (the output at time t depends only on inputs before time t)
and time-invariant (an input shifted in time produces the same output shifted in time)
then the output is the convolution of u(t) and g(t)

u ∗ g =

∫ t

0
u(τ)g(t− τ), ∀t ≥ 0

Note that the upper limit changes due to the causality of the system.
For a MIMO system with k inputs and m outputs, the vector-valued output signal

y(t) ∈ <m is

y(t) =

∫ ∞
0

G(t, τ)u(τ)dτ, ∀t ≥ 0

where G(t, τ) ∈ <m×k is the matrix-valued impulse response signal and u(τ) ∈ <k is
the vector-valued input signal. The entry gij(t, τ) is the ith entry of an output at time
t corresponding to a Dirac pulse applied at the jth input at time τ .
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5.11.2 Laplace Transform

If the system is causal and time-invariant then the system response can be computed
by moving from the time domain (where the output is the convolution of the input and
impulse response) to the frequency domain (where the transformed output is the product
of the transformed input and impulse responses).

Given a continuous-time signal x(t), t ≥ 0 its unilateral Laplace transform is given
by

L (x(t)) = X(s) =

∫ ∞
0

e−stx(t)dt, s ∈ C

Importantly, the Laplace transform of the convolution of two signals x(t) and y(t) is

L (x ∗ y) = L

[∫ t

0
x(τ)y(t− τ)dτ

]
= X(s)Y (s)

The Laplace transform of the derivative ẋ(t) is

L (ẋ(t)) = sX(s)− x(0)

Transfer Function

The Laplace transform of the output y(t) of a continuous-time linear system is

L

[∫ ∞
0

G(t− τ)u(τ)dτ

]
=

∫ ∞
0

∫ ∞
0

e−stG(t− τ)u(τ)dτdt

Changing the order of integration and rearranging yields

Y (s) =

∫ ∞
0

(∫ ∞
0

e−s(t−τ)G(t− τ)dt

)
e−sτu(τ)dτ

Substituting t̄ = t− τ into the integral in parentheses, we have dt̄ = dt and the lower
limit changes to 0− τ = −τ . Thus,∫ ∞

0
e−s(t−τ)G(t− τ)dt =

∫ ∞
−τ

e−s(t̄)G(t̄)dt

However, since the system is assumed to be causal, the integral cannot depend on
time before 0 and thus

∫ ∞
−τ

e−s(t̄)G(t̄)dt =

∫ 0

−τ
e−s(t̄)G(t̄)dt+

∫ ∞
0

e−s(t̄)G(t̄)dt =

∫ ∞
0

e−s(t̄)G(t̄)dt = G(s)

Returning to the expression for Y (s), we now have

Y (s) = G(s)

∫ ∞
0

e−sτu(τ)dτ = G(s)U(s)
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Therefore, we see that G(s) relates the transform of the input u(t) and the transform
of the output y(t). We call this the transfer function of the continuous-time, causal, LTI
system (called the transfer matrix for a MIMO system).

Transfer function G(s) is simply the Laplace transform of the impulse response

G(s) =

∫ ∞
0

e−stG(t)dt, s ∈ C

5.11.3 Z-Transform

The (unilateral) Z-transform of a discrete-time signal y[n] is

Y (z) = (Z)(y[n]) =

∞∑
n=0

z−ny[n]

The transfer function G(z) of a discrete-time system can be derived in the same
manner as was done above for a continuous-time system.

G(z) =
∞∑
n=0

z−nG[n]

5.11.4 Frequency Domain Analysis

The closed loop transfer function of an open loop system G(s) with feedback H(s) and
gain K is

H(s) =
KG(s)

1 +KG(s)H(s)

The denominator 1 +KG(s)H(s) is the characteristic polynomial which determines
the poles of the closed loop transfer function (the eigenvalues of the closed loop A
matrix). Assuming unity feedback (H(s) = 1) we have the requirement that

1 +KG(s)H(s) > 0

for stability. A pole is called as such because the magnitude of the transfer function
goes to infinity at the these values of s (since they cause the denominator of the tranfer
function to go to zero); plotting the magnitude as a function of s results in “poles”
sticking out from a surface plot. A zero is called as such because at these points the
numerator of G(s) (and thus G(s) itself) goes to zero magnitude.

Root Locus

The root locus is a graphical method for determining how the location of the closed loop
poles in the complex frequency plane move as the gain K is increased (recalling that
s = σ + jω, the root locus plots =(s) = jω versus <(s) = σ).



CHAPTER 5. SYSTEMS AND CONTROL THEORY 110

As K → 0, the closed loop poles approach the open loop poles (poles of G(s)); as
K →∞, the closed loop poles approach the open loop zeros (zeros of G(s)). The open
loop transfer function is assumed to be a rational function of s of the form

G(s) = C

∏m
i=1(s− zi)∏n
i=1(s− pi)

where m is the number of open loop zeros, n is the number of open loop poles, and
constant C can be absorbed into the gain by defining K̄ = KC.

When n > m ie the order of the numerator is greater than the order of the denomi-
nator then there is an excess of poles and thus (n−m) go to infinity rather than going
to corresponding open loop zeros.

Nyquist Diagram

The Nyquist diagram is a graphical method for determining the stability of a system.
Recalling that 1 +KG(s) = 0 is the condition for instability, this is equivalent to

G(s) = − 1

K

Thus, a value of s in the right half of the s plane for which G(s) = − 1
K indicates

that the system is unstable.
The Nyquist diagram is a plot of the z = G(s) plane; every point in the right half of

the s plane is mapped to the z plane via the open loop transfer function G(s). If this
map encompasses the point z = − 1

K then the corresponding value of s must be in the
right half of the s plane and the system is unstable.

It is enough to just map the boundary of the right half of the s plane into the z
plane; this boundary is the imaginary axis. Thus, the contour in the Nyquist diagram
is the imaginary axis.

If the imaginary axis (z = G(s) contour) encircles the point z = − 1
K in the clockwise

direction, then the system is unstable. If the system has pole(s) on the imaginary axis,
then the procedure for constructing the diagram varies.

The Nyquist diagram is a polar plot of z = G(s) for the imaginary axis, ie where
s = jω. The imaginary part of G(s) is plotted against the real part of G(s) with fre-
quency ω as the parameter.

Bode Plot

While the Nyquist diagram plots =(G(s)) versus <(G(s)) (parameterized by ω) it is often
more useful to plot these two parts versus frequency on separate graphs. The Bode plot
then consists of an amplitude plot and a phase plot where

G(s = jω) = |G(jω)|ejθ(ω)
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The amplitude is plotted in decibels (dB) as

D(ω) = 20 log10 |G(jω)|

and the phase is plotted in degrees.
When G(s) has only real poles and zeros, it can be written in the form

G(s) = G0

(1 + s
z1

) · · · (1 + s
zm

)

(1 + s
p1

) · · · (1 + s
pn

)

where G(s) has m open loop zeros and n open loop poles. When s = 0 the magnitude
equals the DC gain, ie D(jω = 0) = 20 log10 (G0); when s = jω it can be shown that
D(ω) factors so that

D(ω) = 20 log (G0) +
m∑
i=1

10 log

[
1 +

(
ω2

zi

)]
−

n∑
i=1

10 log

[
1 +

(
ω2

pi

)]
Similarly for the phase,

θ(ω) =
m∑
i=1

tan−1

(
ω

zi

)
−

n∑
i=1

tan−1

(
ω

pi

)
Thus, the log-magnitude plot for any ω is the sum of the log-magnitude plots of each

of the contributing factors; with increasing frequency, a zero “pushes up” both amplitude
and phase while a pole “pulls down” both amplitude and phase.

5.11.5 System Type

Consider a simple error-driven feedback control system with e = yr − y where yr is the
reference input and thus the input to the plant is u = Ke.

The transfer function from the reference input to the error is thus

He(s) =
1

1 +KG(s)
=

e(s)

yr(s)

Note that the return difference 1 + KG(s) in the denominator should be large in
order for the error to be small. The way to do this is obviously by increaing the gain
K; of course, since we can’t make the gain arbitrarily large, we cannot expect to design
a system which tracks a reference with arbitrarily small error. We might not even want
to track a reference with very small error because the reference often contains noise.

Consider when the reference is a polynomial function in time

yr = C1 + C2t+ · · ·+ Cm+1

m!
tm

We say that the system is of type m if it can track such an mth degree polynomial
reference input with finite (but nonzero) steady-state error. Such a system can track a



CHAPTER 5. SYSTEMS AND CONTROL THEORY 112

polynomial reference of degree m− 1 or less with zero error but the error in tracking a
polynomial reference of degree m+ 1 or higher becomes infinite.

The steady-state error of the system can be determined using the final value theorem
for the Laplace transform:

ess = lim
t→∞

e(t) = lim
s→0

se(s)

Here we have

e(s) =
1

1 +KG(s)
yr(s)

and the Laplace transform of the reference is

yr(s) =
C1

s
+
C2

s2
+ · · ·+ Cm+1

sm+1
=
C1s

m + C2s
m−1 + · · ·+ Cm+1

sm+1

Thus, we have

se(s) =
1

1 +KG(s)

C1s
m + C2s

m−1 + · · ·+ Cm+1

sm+1

The limit as s → 0 of se(s) will be infinite if G(0) is finite because the factor sm in
the denominator of the transformed reference goes to zero. We thus need G(s)→∞ as
s→ 0 to cancel this effect, iomplying that we need G(s) to have a pole of at least order
m at s = 0.

If

G(s) =
N(s)

spD(s)

where neither N(s) or D(s) have roots at the origin, then

se(s) =
1

1 +K N(s)
spD(s)

C1s
m + C2s

m−1 + · · ·+ Cm+1

sm
(5.1)

=
sp−mD(s)

spD(s) +KN(s)
(C1s

m + C2s
m−1 + · · ·+ Cm+1) (5.2)

This implies that in the limit as s → 0 we have three possibilities. If p > m, the
error will be zero. If p = m, the error will be finite but nonzero. If p < m, the error will
be infinite.

The system type is thus determined by the order of the pole at s = 0 in the open-loop
process (plant); a system of type m or greater is required to track a reference of order
m with finite (or zero, for type m+ 1 or greater) steady-state error.

The exact error for reference inputs of different orders given the system type can de
derived from the above relations.
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5.12 Older Controls Notes

This section contains different notes on many topics already introduced earlier in this
chapter. These notes come primarily from the excellent older textbook Control Sys-
tem Design: An Introduction to State-Space Methods by Bernard Friedland1 and will
eventually be consolidated with the other notes on the same topics.

5.12.1 Controllability and Observability

Controllability is a measure of how well the internal states of a system can be manipu-
lated.

A system is controllable if it is possible to apply a control sequence which takes the
state from the initial state x(0) to any desired final state x(tf ) in a finite amount of time
(tf <∞).

Observability is a measure of how well the internal states of a system can be inferred
from the knowledge of the inputs to the system and its outputs over time.

A state xi(t) is observable if for any time tf > 0 the initial state of the system xi(0)
can be determined from the time history of the input u(t) and the output y(t) in the
interval [0, tf ]. The system is observable if all its internal states are observable.

The definition results from the fact that if the matrices A and C of the state space
model of the system are know, then to obtain the value of any state xi(t) at any time t
requires only the determination of the corresponding initial state.

Consider the state space model for the linear, time-invariant, discrete-time system
given below. The results are analogous for continuous-time systems.

x[k + 1] = Ax[k] y[k] = Cx[k]

Assuming matrices A and C are known, we have

y[0] = Cx[0]

y[1] = Cx[1] = C (Ax[0])

y[2] = Cx[2] = C
(
A2x[0]

)
...

y[n− 1] = Cx[n− 1] = C
(
An−1x[0]

)
We therefore have

Ox[0] = y

where y is the vector of outputs at times k = 0 through k = n− 1, x[0] is the vector
of initial conditions for all states, and

1https://books.google.com/books/about/Control_system_design.html?id=2M1SAAAAMAAJ

https://books.google.com/books/about/Control_system_design.html?id=2M1SAAAAMAAJ
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O(A,C) =


C

CA
CA2

...
CAn−1


is the observability matrix. If O has full rank (r = n) then there exists a unique

solution for the initial condition vector x[0] and thus the system is observable.

5.12.2 Design of a Regulator for a Single Input System

In general (for systems with multiple inputs) the design of a regulator entails determining
a gain matrix G such that the control input becomes u = −Gx, ie linear feedback.

For a single input system described by ẋ = Ax+Bu, the gain matrix becomes a gain
vector g = [g1, g2, · · · gk] where each gain is associated with one of that states of the kth

order system.
Substituting the in the control law yields the closed-loop system

ẋ = (A− bg)x

Thus, the closed-loop dynamics matrix is Ac = (A − bg) and we wish to choose the
gains such that this matrix has its eigenvalues equal to the desired set {â1, â2, · · · âk}. We
could simply expand the characteristic polynomial of Ac - in this case, the coefficients of
powers of s would be functions of the gains, allowing us to solve k simultaneous equations
for the gains required to produce the desired coefficients.

However, this process is computationally intense. Instead, if the system is given in
companion (controller canonical) form

A =


−a1 −a1 · · · −ak

1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 0


b =

(
1 0 0 · · · 0

)T
then the closed loop dynamics matrix with g =

(
g1 g2 · · · gk

)
becomes

Ac = (A− bg) =


−a1 − g1 −a1 − g1 · · · −ak − gk

1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 0
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That is, the gains are simply added to the coefficients of the open-loop matrix A to
form the closed-loop matrix Ac. We can therefore simply choose

gi = âi − a

For a system which does not have its dynamics represented in this companion form
(usually this is the case), we can transform the system using

x̄ = Tx

where T is a linear transformation. Such transformations preserve the dynamics of
the original system, ie the characteristic equation (and thus the locations of poles or
eigenvalues of A) are unchanged. Then

˙̄x = Āx̄+ b̄u

where Ā = TAT−1 and b̄ = Tb. Then the gain matrix (vector in this case) of the
transformed system is ḡ = â−ā = â−a since ā = a due to the fact that the characteristic
equation is unchanged by the linear transformation T .

Thus the control law for the original system is

u = −gx = −g(T−1x̄) = −ḡx̄

and therefore the gain vector for the transformed system is ḡ = gT−1. Thus, the gain
for the original system is g = T ḡ = T (â − a). To easily choose the gains, we transform
the system to canonical form using T , find the gains for the new system, and transform
the gains back using T . If T is known then this process is trivial.

The transformation T can be expressed as the product T = UV , where U is equal
to the inverse of the controllability matrix

Q = [b, Ab, · · · , Ak−1b]

and V is the inverse of the triangular matrix

W =


1 a1 · · · ak−1

0 1 · · · ak−2
...

... · · ·
...

0 0 · · · 1


The matrix U brings A into observer canonical form and the matrix V transforms

from the observer form into the controller form. The implication is that the system must
be controllable in order for Q to have an inverse (otherwise Q is rank-deficient).

The desired gain matrix g can thus be written as

g = [(QW )−1](â− a)
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For a system with multiple inputs, u = −Gx where G is the full gain matrix. This
means that there are km gains to be specified where m is the number of inputs (dimen-
sionality of u). There are thus more gains than are needed to place all closed-loop poles,
allowing the designer the flexibility to place poles and meet other design requirements
as well.

Given that there are practical limits to how large the control input can be in a
system (either due to additional cost/weight or due to saturation above a certain gain
value), there are several things to note about the above formula (called the Bass-Gura
formula). First, the each gain is proportional to the distance which the corresponding
pole is to be moved; moving the pole a shorter distance requires a lower gain and thus
a smaller control input. Second, note that the gains are inversely proportional to the
controllability matrix - hence, a system which is less controllable requires a higher gain
to move a pole the same distance (qualitatively).

In general, one should not try to move the poles further left than are required. Since
poles further in the left-hand plane will decay out faster than those which are closer,
control inputs will be governed by the former but system response speed will be slowed
by the latter (poles further from the origin decay faster). This suggested that one might
optimize pole placement by moving all poles to roughly the same distance (real parts)
from the origin to make the control effort more efficient. The Butterworth configuration
spaces poles evenly about the complex plane at a constant distance from the origin.
Another concern is bandwidth - one wants to keep the bandwidth high enough to achieve
the desired speed of responce but low enough to avoid exciting high-frequency modes or
responding strongly to noise.

NOTE: Residues are the coefficients (in the numerator) in partial fraction expansion
of a transfer function.

5.12.3 Linear Observers

For a dynamic system represented in state space form

ẋ = Ax+Bu

we now assume that we cannot directly measure the state of the system; instead, we
can only measure the observation vector

y = Cx

where y is of lower dimension than x. In truth, we say that the matrix C is square
but has less than full rank - this means that even though we have the same number of
observations as state variables, the outputes we measure are not all independent. We
thus cannot invert C to solve for x directly.

It is theoretically possible to use past observation data to find the state known at a
past time (using an integral from Ch 5) and integrate, using the system dynamics given
above, to find the state at the current time. However, this method of extrapolation
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requires computation of a difficult integral and inevitably introduces errors present in
the measurement of y.

Instead, we seek to obtain an estimate x̂ as follows. Let the estimate be the output
of the dynamic system

˙̂x = Âx̂+ B̂u+Ky

excited by measurement y and input u. We wish to selec Â and B̂ such that the
error

e = x− x̂

is small. This is called Luenberger’s method. The differential equation governing the
time evolution of the error is

ė = ẋ− ˙̂x = Ax+Bu− Â(x− e)− B̂u−KCx
= Âe+ (A−KC − Â)x+ (B − B̂)u

which comes from the previous equations in this section. We desire for the error to
go asymptotically to zero, ie we want the system

ė = Âe

with Â being a stable dynamics matrix, ie a matrix with all negative eigenvalues
(poles in the LHP). This requires that

Â = A−KC
B̂ = B

This imples that we cannot choose Â, B̂ and K arbitrarily; B̂ must be the control
matrix of the system and the choice of K determines Â. We thus are tasked with choosing
K. These restrictions can be written into the dynamic system for the state estimate as

˙̂x = (A−KC)x̂+Bu+Ky

= Ax̂+Bu+K(y − Cx̂)

Thus, the differential equation governing the state estimate is the same as above but
with an additional input K(y−Cx̂) = KC(x−x̂) where r = y−Cx̂ is called the residual.
The residual is the difference between the true and estimated outputs and tends to zero
when the error is forced to zero.

The observer is thus in the form of a feeback system where the residual takes the
role of the error. Determining a matrix K which makes closed-loop dynamics matrix
Â = (A −KC) have only negative eigenvalues is analagous to the task of determining
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the gain matrix G which shaped the dynamic response in the previous section. As long
as the observability matrix

N = [CT , ATCT , · · · (AT )k−1CT ]

has full rank (r = k) then the eigenvalues of Â can be placed at any locations desired.
For a system with a single output, we have Â = A−kcT where cT =

(
c1 c2 · · · ck

)
.

If we take the transpose of this matrix we get

ÂT = AT − ckT

which has the same form as the closed-loop matrix Ac = A−bgT from the single-input
full-state (all states known) feedback problem of the previous section. Determining the
gain vector k is the same problem as determining the gain vector g from the feedback
problem.

Using the Bass-Gura formula again, we find that

k = [(NW )T ]−1(â− a)

where N is the observability matrix (given above) and W is again the triangular
matrix

W =


1 a1 · · · ak−1

0 1 · · · ak−2
...

... · · ·
...

0 0 · · · 1


Note again that the presence of multiple outputs just permits flexibility in design

(place the eigenvalues and shape system response attributes).

Reduced Order Observers

When there is one output for every state variable (the observation equation is y = Cx)
then the state vector can be computed simply as x = C−1y. In this case an observer is
not needed. But is a kth order observer needed (for a kth order system) when only some
fraction of the state vector is not measureable? It makes sense that an observer of lower
order is sufficient in this case.

Consider a state vector x composed of two smaller state vectors - x1 which can be
measured directly and x2 which cannot. That is,

x =

(
x1

x2

)
The two systems corresponding to these state vectors are
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ẋ1 = A11x1 +A12x2 +B1u

ẋ2 = A21x1 +A22x2 +B2u

and the observation is simply given by y = C1x1 since only x1 can be measured. The
“standard observer” for each of these variables is then

˙̂x1 = A11x̂1 +A12x̂2 +B1u+K1(y − C1x̂1)

˙̂x2 = A21x̂1 +A22x̂2 +B2u+K2(y − C1x̂1)

Of course, there’s no reason to keep the first observer since x1 = x̂1 = C−1
1 y can be

measured directly. Using this fact, the second observer becomes

˙̂x2 = A21C
−1
1 y +A22x̂2 +B2u

The dynamic behavior of this observer is then governed by the eigenvalues of the
open-loop dynamics matrix A22 which the control system design cannot influence (it is a
submatrix of A and is part of the plant model). If the eigenvalues of this matrix happen
to be negative then this observer could work fine, but if they are not then the observer
must be formulated in a more general form.

Consider forming the system

x̂2 = Ly + z

ż = Fz + Py +Hu

where z is the state of a (k− l)th order system. Note that the letters chosen for these
matrices have no special meaning. NOTE TO SELF: why use this form of system??
Where does this come from?

As for the full-order observer, the error is e = x− x̂ which is here

e =

(
e1

e2

)
=

(
x1 − x̂1

x2 − x̂2

)
but of course e1 = 0 because the states comprising x1 can be measured directly. We

therefore consider only e2, the differential equation for which is

ė2 = ẋ2 − ˙̂x2 = A21x1 +A22x2 +B2u− Lẏ − ż

Using the formula for ż and the fact that ẏ = C1x1 = C1[A11x1 +A12x2 +B1u] yields

ė2 = A21x1 +A22x2 +B2u− LC1[A11x1 +A12x2 +B1u]− Fz − Py −Hu
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To eliminate the remaining z (which has no significance in the original system) and
y we recognize that z = x̂2−Ly = (x2−e2)−LC1x1 and y = C1x1. The above equation
then becomes

ė2 = A21x1+A22x2+B2u−LC1[A11x1+A12x2+B1u]−F [x2−e2−LC1x1]−PC1x1−Hu

Finally, simplifying the above expression be grouping terms multiplying e2, x1, x2,
and u yields

ė2 = Fe2+(A21−LC1A11−PC1+FLC1)x1+(A22−LC1A12−F )x2+(B2−LC1B1−H)u

In order for the observation error to go asymptotically to zero for all x1, x2 and u
we must require that the matrices multiplying these vectors be zero (we want the time
evolution of the error to be independent of the value of the states and the control input).
This requires

F = A22 − LC1A12

H = B2 − LC1B1

PC1 = A21 − LC1A11 + FLC1

What remains is the differential equation ė2 = Fe2 and thus the eigenvalues of F
must be negative in order for the error differential equation to be asymptotically stable.

We therefore must choose L such that the poles of F = A22−LC1A12 are in the LHP.
This is the same problem as choosing the matrix K such that the poles of Â = A−KC
are stable for the full-order linear observer; here we have A = A22 and C = C1A12.
Again, it is only possible to choose such a matrix L if the observability matrix

N = [AT12C
T
1 , A

T
22A

T
12C

T
1 , · · · (AT22)k−l−1AT12C

T
1 ]

is of (full) rank k− l. Once L has been selected, the matrices H and P can easily be
solved for from the equations given above.

Note that if the state vector cannot be defined as the concatenation of two subvectors
x1 and x2 as was done above then a more general reduced-order observer is needed. In
practice, the state vector can typically be broken into subvectors in this manner.

5.12.4 Disturbances and Tracking (Exogeneous Inputs)

Assume that a state-space system is in the form

ẋ = Ax+Bu+ Fxd

where xd is a disturbance vector (which we may or may not be able to measure
directly).
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We are also going to require the system to track a reference state xr. These two
vectors are assumed to be governed by the known differential equations

ẋd = Adxd

ẋr = Arxr

These are clearly unforced differential equations ie are not subject to control by the
designer (the full system is necessarily uncontrollable).

We are concerned with the error in tracking a reference state e = x − xr for which
the governing differential equation (from the equations given above) is

ė = ẋ− ẋr = A(e+ xr) + Fxd +Bu−Arxr (5.3)

= Ae+ (A−Ar)xr + Fxd +Bu (5.4)

Defining x0 to be the vector composed of the exogeneous inputs

x0 =

(
xr
xd

)
and E to be the matrix composed as

E =
(
A−Ar F

)
we can write

ė = Ae+ Ex0 +Bu

Further, if we compose the metastate

x =

(
xo
e

)
then this satisfies the metastate equation ẋ = Ax+Bu where

A =

(
A E
0 A0

)
A0 =

(
Ar 0
0 Ad

)
B =

(
B
0

)
The output (observation) equation is, in general,

y = Cx = Cee+ Crxr + Cdxd

However, it should be noted that sometimes only the error can be measured; in this
case C =

(
C 0 0

)
. Note that the reference input xr appears in the error differential

equation through the term (A−Ar)xr. This implies that if the reference can be produced
from the unforced (homogeneous) solutions to the open-loop system (in this case A = Ar)
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then it does not contribute to the error. Unless the dynamics matrix A has repeated
eigenvalues at the origin (and thus non-exponential solutions) then it is impossible to
track anything else (steps, ramps, etc). We already expect this as we know that the
system must have a pole at the origin of order m to track polynomial inputs of order
m− 1 or less with zero error.

Of course, since the metastate is inherently uncontrollable (the disturbance and ref-
erence systems are unforced) we cannot use the pole placement technique of previous
sections.

Instead, we work directly with the error differential equation ė = Ae + Bu + Ex0.
We essentially consider the exogeneous vector x0 to be an input just like u; the idea is
to design u such that it counteracts the effects of the exogeneous inputs.

Consider a linear control law

u = −Ge−G0x0 = −Ge−Grxr −Gdxd
Here we will assume in our design that the exogeneous vector and the system error

are both accessible for measurement during operation, which may not always be the
case. The gain matrices involved in our control law can be chosen independent of the
availability of these measurements.

The error diffiential equation given above becomes

ė = Ae+ Ex0 −B(Ge+G0x0)

which is essentially a linear system excited by the homogeneous input x0.
It is impossible to choose the gain matrices G and G0 to keep the system error zero

for all x0 and e. Instead, we require tha:
1) The closed-loop system should be asymptotically-stable. 2) A linear combination

of the error state variables should be zero in the steady state (rather than the whole
state vector going to zero).

In order to satisfy the first condition, we need Ac = A−BG (which si the closed-loop
dynamics matrix for the error differential equation) to have negative eigenvalues (poles
in the LHP). This can be accomplished by choosing G to shift the roots in the same
manner as was done in previous sections.

The second condition is tougher to satisfy. Since steady state implies ė = 0 we have

(A−BG)e = (BG0 − E)x0

The closed-loop dynamics matrix is necessarily stable (from the first condition) and
so its inverse must exist (no roots at the origin). Thus, the steady state error is given
by

e = (A−BG)−1(BG0 − E)x0

This error, as was noted, will not be zero. Instead, we required that y = Ce = 0
where C is a singular matrix of proper dimension (C must be singular or this equation
would force e = 0 which is not possible). Thus, we require that
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C(A−BG)−1(BG0 − E)x0 = 0

However, since we want this to hold for every x0, we require that

C(A−BG)−1(BG0 − E) = 0

ie this term must be the matrix of zeros in order for every x0 to lie in its nullspace.
We can write the above equation as

C(A−BG)−1BG0 = C(A−BG)−1E

Consider solving the left hand side of this equation for G0. If y has dimension j then
C is a j × k matrix; assume (A − BG)−1) is a k × k matrix and B is a k ×m matrix
(where m is the number of control variables). Then the matrix multiplying G0 has size
j ×m and we have three cases.

If j > m then the columns of the matrix span only a subspace of dimension j and
thus there is no solution (unless the right hand side happens to lie in this subspace which
is a very special case).

If j < m then the columns of the matrix must be dependent and there are thus
infinite solutions to the underdetermined system. This is not a problem, as it allows for
a choice of G0 which may satisfy additional design criteria.

If j = m and the matrix is nonsingular then there is exactly one solution for G0. In
this case we have

G0 = [C(A−BG)−1B]−1C(A−BG)−1E

It can be shown that C(A−BG)−1B is invertible if and only if

lim
s→0

H0(s) = |C(sI −A)−1B| 6= 0

Note that the invertibility of this matrix does not depend on the gain matrix G;
indeed, we can choose any G which makes the closed-loop dynamics matrix of the er-
ror differential equation asymptotically stable without affecting the invertibility of this
matrix. Of course, the choice of G affects the computed G0.

Note that xr does not need to have all its components specified in most cases - we
may wish to track references for only some of the state variables. In such a case, the
component of x0 corresponding to the reference will be of lower dimension than k and
the corresponding submatrix of E will shrink.

Measuring the Error and Exogeneous Inputs

As mentioned above, there may very well be cases in which we cannot directly measure
the error and/or exogeneous inputs; such cases require the addition of observers which
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extimate these variables. Without this information we obviously cannot implement the
control law developed above.

We now assume that the entire metastate x (composed of the error and exogeneous
inputs) cannot be directly measured. If only part of the metastate cannot be measured
then we can implement a reduced-order observer, as detailed later in this section. We
thus assume that the observation vector depends on both the error and the exogeneous
inputs:

y = Ce+Dx0 = C̃x

where

C̃ =
(
C D

)
Applying the general observer equation (seen earlier) to the metasystem yields

˙̂x = Ax̂+Bu+K(y − C̃x̂)

which can be separated into two coupled equations - one governing the error and the
other governing the exogeneous input.

˙̂e = Aê+Bu+ Ex̂0 +Ke(y − Cê−Dx̂0)

˙̂x0 = A0x̂0 +K0(y − Cê−Dx̂0)

Note that the closed-loop dynamics matrix of the metasystem is

Â = A−KC̃ =

(
A−KcC E −KeD
−K0C A0 −K0D

)
If the metasystem is observable then the poles can be moved to arbitrary locations

via the choice of K.

5.12.5 Compensator Design

Consider yet again the dynamic process

ẋ = Ax+Bu

with observation vector y = Cx and suppose that we have already designed a full-
state feedback control law of the form

u = −Gx

as detailed in a previous section. Also suppose that we have designed a full-state
linear observer
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˙̂x = Ax̂+Bu+K(y − Cx̂)

How do we combine the controller and observer into a compensator? The separation
principle says that we should use the control law

u = −Gx̂
That is, the control law should simply use the previously-designed G with the es-

timate x̂ from the previously-designed observer. The compensator is therefore a com-
bination of a controller and an observer; the full system is the combination of this
compensator and the original plant. We are thus dealing with a system of order 2k (k
state variables in the plant and another k from the state estimates in the compensator).

Applying the control law dictated by the separation principle, we have

ẋ = Ax−BGx̂
The equation for the observer becomes

˙̂x = Ax̂−BGx̂+KC(x− x̂)

Again, defining the observer error to be e = x− x̂ we have

ė = ẋ− ˙̂x

= Ax−BGx̂− [Ax̂−BGx̂+KC(x− x̂)]

= (A−KC)e

and since x̂ = x− e,

ẋ = Ax−BGx̂
= Ax−BG(x− e)
= (A−BG)x+BGe

The system of order 2k may therefore be defined by a state composed of e and x and
governed by the differential equations

ė = (A−KC)e

ẋ = (A−BG)x+BGe

The first equation generates the estimation error e and the evolution of the state is
then driven by this error. In order for this combined system to be stable, the eigenvalues
of both Â = (A−KC) and Ac = (A−BG) must be negative. These are the closed-loop
matrices of the full-state observer and the full-state controller, respectively; designing
each of these individually ensures that the overall system will be stable.

Similarly, a compensator can be designed using a reduced-order observer following
the results of the previous section.



CHAPTER 5. SYSTEMS AND CONTROL THEORY 126

5.12.6 Optimal Control

Consider the dynamic process characterized by, as usual,

ẋ = Ax+Bu

where we seek a linear control law

u(t) = −Gx(t)

Instead of choosing the matrix G such that the closed loop poles are moved to desired
locations, we determine the gain matrix which minimizes the cost function

V =

∫ T

t

[
xT (τ)Q(τ)x(τ) + uT (τ)Ru(τ)

]
dτ

where Q and R are symmetric matrices, the lower integrand t is the present time
and the upper integrand T is the terminal time (the time different T − t is called the
control interval or “time-to-go”). This cost function (or performance criterion) is thus
the integral of a quadratic form in the state x plus a quadratic form in the control u.

The minimization of such an integral is rarely the “true” goal of the control system;
however, the true design objectives often cannot be expressed mathematically or cannot
be solved easily even if they can be expressed precisely. On the other hand, if the problem
is simplified so that it becomes easy to express and solve then the design may not even
meet the desired characteristics. In such a case, optimal control thus offers a practical
compromise between a difficult problem and an artificially simplified problem.

The first of the two quadratic forms represents a penalty on the deviation of the
state from the origin and the second represents the “cost of control” (a penalty on using
control). Note that this means the desired state is the origin! Consideration of optimal
control for a system in which the desired state is nonzero (ie a reference to be tracked)
will be considered later.

The matrix Q essentially specifies the importance of the components of the state
vector relative to one another. The matrix R specifies the cost of the various components
of the control vector. The reason for including this term is to limit the amount of control
which is used since, in reality, actuators providing the control cannot provide arbitrarily
large control signals. In theory one might think that as much control as possible should
be used - this will push the closed loop poles furthest from the imaginary axis and thus
yield the fastest response time. Of course, one must consider the cost of control (ie
size, weight, energy) as well as the fact that saturation may occur. if the control signal
saturates, the system will exhibit unexpected behavior because the designer placed the
poles assuming no saturation. Matrix R is thus typically selected large enough that
saturation is avoided.

When the control law above is used to control the standard dynamic process given
above, we of course have

ẋ = Ax−BGx = Ac(t)x
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where Ac = A−BG is the closed loop dynamics matrix which we will here allow to
vary with time (thus A,B and G are not restricted to be constant matrices). Since the
dynamics matrix is non-constant, we cannot write the solution in terms of the matrix
exponential; instead, the solution to this differential equation can be written

x(τ) = Φc(τ, t)x(t)

where Φc is the state-transition matric corresponding to Ac. This equation simply
says that the state at any time τ depends linearly on the state at any other - past
or future (or even present, in which case Φc is defined to equal the identity) - time t.
Thankfully, since no simple expression is available for the state-transition matrix (in
general), it will be needed in the following derivation.

Substituting the linear feedback control law into the performace criterion integral
yields

V =

∫ T

t

[
xT (τ)Q(τ)x(τ) + xT (τ)GT (τ)RG(τ)x(τ)

]
dτ

=

∫ T

t

[
xT (t)Φc(τ, t)

{
Q+GTRG

}
Φc(τ, t)x(t)

]
dτ

Since the initial state x(t) does not depend on time, we can move it outside the
integral to yield

V = xT (t)M(t, T )x(t)

where M is a symmetric matrix defined to be

M(t, T ) =

∫ T

t
Φc(τ, t){Q+GTRG}Φc(τ, t)dτ

The optimum gain matrix G thus minimizes this integral. We wish to obtain a
differential equation to which M is the solution. Noting that V is a function of the
initial time t we can write

V (t) =

∫ T

t
xT (τ)L(τ)x(τ)dτ

where L = Q+GTRG. We now wish to find the derivative dV
dt of the integral V (t),

recalling that the first part of the fundamental theorem of calculus states that for all x
in (a, b)

d

dt

∫ x

a
f(t)dt = f(x)

By first switching the upper and lower limits (which negates the integral) and then
applying this theorem to V (t) we find that
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dV

dt
= −xT (t)L(t)x(t)

However, we can obtain another expression for the derivative of V from V = xT (t)M(t, T )x(t).
This yields

dV

dt
= ẋT (t)M(t, T )x(t) + xT (t) ˙M(t, T )x(t) + xT (t)M(t, T )ẋ(t)

Since ẋ(t) = Acx(t) this simplifies to

dV

dt
= xT (t)

[
ATc (t)(t)M(t, T ) + ˙M(t, T ) +M(t, T )Ac(t)

]
ẋ(t)

Comparing expressions for dV
dt leads directly to the fact that

−L = ATcM + Ṁ +MAc

where it should be noted that these matrices are functions of time (the notation has
been omitted here for simplicity). The differential equation for which M is the solution
is

−Ṁ = MAc +ATcM + L

where again L = Q + GTRG. We need one initial condition in order to specify the
solution to the above differential equation completely; since we already know that the
solution is

M(t, T ) =

∫ T

t
Φc(τ, t)L(t)Φc(τ, t)dτ

then clearly M(T, T ) = 0 is the required condition.
We are now tasked with finding the gain matrix G which minimizes the cost function.

For any choice of G (optimal or no) the closed-loop performance is given by

V (t) = xT (t)M(t, T )x(t)

where M(t, T ) is the solution to

−Ṁ = M(A−BG) + (A−BG)TM + (Q+GtRG)

= M(A−BG) + (AT −GTBT )M +Q+GtRG

We now wish to find the G which minimizes M . By this we mean that we wish to
find the optimal soluion M̂ for which the quadratic form

V̂ = xT M̂x < xTMx

for arbitrary an initial state x(t) and for all M 6= M̂ .
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This optimal solution M̂ and corresponding optimal gain Ĝ must satisfy

− ˙̂
M = M̂(A−BĜ) + (AT − ĜTBT )M̂ +Q+ ĜTRĜ

Any nonoptimal solution and gain can be expressed in terms of the optimum solution
and gain as

M = M̂ +N

G = Ĝ+ Z

The differential equation satisfied by the nonoptimal variables is thus

−(
˙̂
M+Ṅ)+ = (M̂+N)[A−B(Ĝ+Z)]+[AT−(ĜT+ZT )BT ](M̂+N)+Q+(ĜT+ZT )R(Ĝ+Z)

Subtracting the differential equation corresponding to the optimal solution from that
corresponding to the non-optimal solution yields the followsing differential equation for
N .

−Ṅ = NAc +ATc N + (ĜTR− M̂B)Z + ZT (RĜ−BT M̂) + ZTRZ

where Ac = A−BG = A−B(Ĝ− Z). This equation has the same form as

−Ṁ = MAc +ATcM + L

where in this case

L = (ĜTR− M̂B)Z + ZT (RĜ−BT M̂) + ZTRZ

The solution for N is thus of the form

N(t, T ) =

∫ T

t
ΦT
c (τ, t)LΦc(τ, t)dτ

If V̂ is minimized then we must have

xT M̂x ≤ xT (M +N)x = xT M̂x+ xTNx

This implies that the N must be positive (semi) definite. Based on the integral for
N above, in order for the quadratic form xTNx to be positive L must be positive (semi)
definite since for any positive-semidefinite M and invertible Q we know that QTMQ is
also positive-semidefinite. Looking at the expression for L in differential equation for N ,
we see that for sufficiently-small Z the linear terms dominate the quadratic term and
it’s theoretically possible to choose Z such that L is negative definite. The only way to
avoid this is for the linear terms to dissappear and thus

RĜ−BT M̂ = 0
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which leads to the optimum gain

Ĝ = R−1BT M̂

Thus the differential equation for M becomes

− ˙̂
M = M̂A+AT M̂ − M̂BR−1BT M̂ +Q

This matrix differential equation is known as the Riccati equation. It is the sum of
linear terms and a quadratic term; because of the quadratic term, there is no general
formula for the solution. In most cases, M̂(t, T ) is solved for analytically. This is often
done by numerically integrating the differential equation backward in time (since the
condition to be satisfied M̂(T, T ) = 0 is at the terminal time). There are k(k + 1)/2
coupled, scalar equations which must be integrated because M̂ is symmetric.

5.13 Nonlinear Systems

The dynamic system

ẋ = f(x, u)y = g(x, u)

is said to be nonlinear when the functions f and g are nonlinear in the state x and
control input u. State space representation and corresponding control theory is no longer
valid for such a system; however, it is possible to analyze and control such a system by
using a linear approximation.

5.13.1 Linearization around an Equilibrium Point

Consider the linearization of the above nonlinear dynamic system about an equilibrium
point (x0, u0). Such an equilibrium point is defined as a point where f(x0, u0) = 0 or in
other words where the derivative ẋ vanishes.

Such an equilibrium point is either an attractor or repeller - that is, small deviations
from this point either cause the system to fall back to equilibrium or diverge from
this point. One can thus determine whether such a point is considered to be stable or
unstable; this is done by investigating the derivatives of x.

Assuming a stable equilibrium point is found, we can safely linearize the system
around it because small deviations will pull it back to this point. Consider then the case
in which we apply an input u(t) = u0 + δu(t) which is perturbed from the equilibrium
point. Additionally, the initial condition is here x(0) = x0 + δx0. The corresponding
output of the system will then be close to y = g(x0, u0) but not quite equal to this value.
How much do the state x(t) and the ouput y(t) then differ due to these perturbations?

We define δx(t) = x(t)− x0 and δy(t) = y(t)− y0. Thus, we have

δy = g(x, u)− y0 = g(x0 + δx, u0 + δu)− g(x0, u0)
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The Taylor Series expansion of g about the equilibrium point (x0, u0) is, to first
order,

g(x, u) ≈ g(x0, u0) +
∂g(x0, u0)

∂x
δx+

∂g(x0, u0)

∂u
δu

Thus, we have

δy =
∂g(x0, u0)

∂x
δx+

∂g(x0, u0)

∂u
δu

The time evolution of δx is determined by taking its time derivative. Thus,

δẋ =
d

dt
(x(t)− x0) = ẋ = f(x, u) = f(x0 + δx, u0 + δu)

Similarly, we can expand f about (x0, u0) to yield

f(x, u) ≈ f(x0, u0) +
∂f(x0, u0)

∂x
δx+

∂f(x0, u0)

∂u
δu

We thus have an linear system defined by

δẋ = Aδx+Bδuδy = Cδx+Dδu

where the usual system matrices A, B, C, and D are the Jacobian matrices defined
by

A =
∂f(x0, u0)

∂x
B =

∂f(x0, u0)

∂u
C =

∂g(x0, u0)

∂x
D =

∂g(x0, u0)

∂u

This completes our local linearization around the stable equilibrium point (x0, u0).
We can also linearize about a desired trajectory (xdes(t), udes(t)) in the same manner;

in this case, the system generally becomes LTV with {A(t), B(t), C(t), D(t)} because the
partial derivatives given above must be evaluated at each timestep. There are however
certain systems for which linearization around certain trajectories results in an LTI
system.

5.13.2 Nonlinear Observability

Recall that a linear system is said to be observable if there exists a finite tf > t0 such
that for any initial state x(t0), knowledge of the input u(t) and the measured output
y(t) over the interval [t0, tf ] is sufficient to determine x(t) on the interval.

A linear (in general, time-varying) system is observable on the interval [t0, tf ] if and
only if the observability Grammian

Wo(t0, tf ) =

∫ tf

t0

ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0)dτ
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is nonsingular. However, for a linear, time-invariant (LTI) system it can be shown that
the condition for observability is

rank O(A,C) = rank


C
CA
CA2

· · ·
Cn−1A

 = n

where O(A,C) is called the observability matrix. If this condition does not hold, then
the unobservable subspace is given by the nullspace of O(A,C).

For nonlinear systems, observability isn’t as well-defined. Essentially, we want to
know how much the output y = h(x) changes with a change in the state ẋ = f(x).
Equivalently, we want to know the derivative of vector field h(x) along the flow of vector
field f(x). We can write:

y = h(x)

ẏ =
dh(x)

dx

dx

dt
= L1(x)

ÿ =
dL1(x)

dx

dx

dt
= L2(x)

and so on where Li is called the ith Lie derivative of h(x). We can then write:

∂

∂t
y =

∂h

∂x

∂x

∂t
= ∇h∂x

∂t
∂

∂t
ẏ =

∂L1

∂x

∂x

∂t
= ∇L1

∂x

∂t
∂

∂t
ÿ =

∂L2

∂x

∂x

∂t
= ∇L2

∂x

∂t

and so on. Now, ”multiply” both sides by ∂t to get
∂y
∂ẏ
∂ÿ
...

 =


∇h
∇L1

∇L2
...

 ∂x

where we define the nonlinear observability matrix to be

O =


∇h
∇L1

∇L2
...


So O relates a perturbation in the state to changes in the output and its derivatives.
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We investigate the observability of an estimator having nonlinear prediction and/or
measurement models by forming the nonlinear observability matrix2. As in the linear
case, the state is observable if O has full rank; unobservable state combinations are
parameterized by the nullspace of O. Given a system with nonlinear process model
ẋ = f(x) and measurement model y = h(x),

O =


∇h(x)

∇(∇h • f(x))
∇(∇(∇h • f(x)) • f(x))

...


where ∇ denotes the Jacobian with respect to x. In the linear case, ∇h = C and
f(x) = Ax so ∇(∇h • f(x)) = ∇(CAx) = CA, ∇(∇(∇h • f(x)) • f(x)) = CA2 and so
on. Unlike in the linear case, there is no condition limiting the size of O; however, only
a finite number of derivatives usually need be taken before successive rows become zero
(and thus no longer affect the rank). Essentially, O illustrates that states are observable
because they are measured directly or because they appear in the dynamics (of some
order) of a state which is measured directly. Note that since O is state-dependent in
general, this procedure investigates local observability.

5.14 System Modeling

System modeling results in differential equations of motion and can be done either by
using Newton’s second law (summing forces/torques to directly produce differential equa-
tions) or by using Lagrange’s equation (which instead requires a description of the po-
tential and kinetic energy of the system).

Example: Inverted Pendulum on a Cart
The cart is modeled as a point mass with mass M ; the pendulum has length 2l and

is fixed to the center of mass of the cart, which is the location of the origin.
The kinetic energy of the cart is simply

Tc =
1

2
Mẋ2

The kinetic energy of the pendulum as represented in the chosen cartesian coordinates
is a function of the angle θ. We know that the center of mass of the pendulum is located
at a distance l from the center of mass of the cart (and thus the origin) so its position
in cartesian coordinates is given by

xp = x+ l sin θ

yp = l cos θ

The kinetic energy of the pendulum is then

2https://www.math.ucdavis.edu/~krener/1-25/10.IEEETAC77.pdf

https://www.math.ucdavis.edu/~krener/1-25/10.IEEETAC77.pdf
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Tp =
1

2
m
[
ẋp

2 + ẏp
2
]

where

ẋp
2 = (ẋ+ lθ̇ cos θ)2 = ẋ2 + 2lẋθ̇ cos θ + l2θ̇2 cos2 θ

ẏp
2 = (lθ̇ sin θ)2 = l2θ̇2 sin2 θ

Thus,

Tp =
1

2
m
[
ẋ2 + 2lẋθ̇ cos θ + l2θ̇2(sin2 θ + cos2 θ)

]
Finally, using the fact that sin2 θ+ cos2 θ = 1, the total kinetic energy of the system

is

T = Tc + Tp =
1

2
(M +m)ẋ2 +mlẋθ̇ cos θ +

1

2
ml2θ̇2

The only potential energy in the system is the gravitational potential energy of the
pendulum’s center of mass (taking y = 0 to be the reference ie where U = 0). Thus,

U = mgl cos θ

The Lagrangian can then be formed as

L = T − U =
1

2
(M +m)ẋ2 +mlẋθ̇ cos θ +

1

2
ml2θ̇2 −mgl cos θ

Lagrange’s equations for this system are then

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= F − bẋ

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

Where the partial derivatives of L as as follows.

∂L

∂ẋ
= (M +m)ẋ+mlθ̇ cos θ

∂L

∂x
= 0

∂L

∂θ̇
= mlẋ cos θ +ml2θ̇

∂L

∂θ
= mlẋθ̇ sin θ +mgl sin θ
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The first of Lagrange’s equations is thus

d

dt

(
(M +m)ẋ+mlθ̇ cos θ

)
− 0 = F − bẋ

(M +m)ẍ+
[
−mlθ̇2 sin θ +mlθ̈ cos θ

]
+ bẋ = F

(M +m)ẍ+mlθ̈ cos θ −mlθ̇2 sin θ + bẋ = F

The second of Lagrange’s equations is thus

d

dt

(
mlẋ cos θ +ml2θ̇

)
−
[
mlẋθ̇ sin θ +mgl sin θ

]
= 0[

mlẋθ̇ sin θ +mlẍ cos θ
]

+ml2θ̈ −mlẋθ̇ sin θ −mgl sin θ = 0

mlẍ cos θ +ml2θ̈ −mgl sin θ = 0

ẍ cos θ + lθ̈ − g sin θ = 0

The differential equations of motion describing the system are thus

(M +m)ẍ+mlθ̈ cos θ −mlθ̇2 sin θ + bẋ = F

ẍ cos θ + lθ̈ − g sin θ = 0

We will now use these equations to solve for ẍ and θ̈ as functions of {ẋ, x, θ̇, θ} in
preparation for reducing this system of two second-order equations into a system of four
first-order equations. Solving the second equation for θ̈ yields

θ̈ =
1

l
[−ẍ cos θ + g sin θ]

Substituting this result into the first equation of motion and simplifying yields

ẍ =
mlθ̇2 sin θ −mg sin θ cos θ − bẋ+ F

(M +m(1 + cos2 θ))

Solving the second equation for ẍ yields

ẍ =
1

cos θ
[−lθ̈ + g sin θ]

Substituting this result into the first equation of motion and simplifying yields

θ̈ =
−g(M +m) tan θ +mlθ̇2 sin θ − bẋ+ F

ml cos θ − l
cos θ (M +m)

We now choose state variables {x1, x2, x3, x4} = {x, ẋ, θ, θ̇} such that our system of
equations becomes
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ẋ1 = x2

ẋ2 =
−mg sinx3 cosx3 +mlx2

4 sinx3 − bx2 + F

(M +m(1 + cos2 x3))

ẋ3 = x4

ẋ4 =
−g(M +m) tanx3 +mlx2

4 sinx3 − bx2 + F

ml cosx3 − l
cosx3

(M +m)

with the outputs

y1 = x1

y2 = x3

After linearization, the state space formulation of this system is
ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

0 −b
M

mg
M 0

0 0 0 1

0 −b
Ml

g(M+m)
Ml 0



x1

x2

x3

x4

+


0
1
M
1
Ml
0

F

(
y1

y2

)
=

(
1 0 0 0
0 0 1 0

)
x1

x2

x3

x4

+

(
0
0

)
F



Chapter 6

Robotics

6.1 Kinematics

The position and orientation (together, pose) of a rigid body in space can be described
with respect to a coordinate frame in terms of a translation from the frame’s origin and
(a series of) rotations about the axes of the frame.

Let the fixed coordinate frame with origin O be specified by the unit axes x, y and
z; let the body coordinate frame with origin O′ be specified by unit axes x′, y′ and z′.

Then the position of O′ with respect to O is

o′ = o′xx + o′yy + o′zz

which can be written, in terms of the axes of the fixed frame, as the vector o′ =
[o′x, o

′
y, o
′
z]
T .

The orientation of the body frame with respect to the fixed frame is specified by
expressing the axes of the body frame in terms of the axes of the fixed frame. This
yields

x′ = x′xx + x′yy + x′zz

y′ = y′xx + y′yy + y′zz

z′ = z′xx + z′yy + z′zz

These relations can be expressed compactly in the rotation matrix

R =

x′ y′ z′

 =

x′x y′x z′x
x′y y′y z′y
x′z y′z z′z

 =

x′Tx y′Tx z′Tx

x′Ty y′Ty z′Ty

x′T z y′T z z′T z


This matrix simply describes the body frame’s axes in terms of the fixed frame.

Note that since the axes of both frames are unit vectors these inner products are equal

137
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to the cosines of the angles between the corresponding axes. For this reason, the rotation
matrix is also referred to as the direction cosine matrix (where each element is referred
to as a direction cosine).

Note that this matrix is orthogonal so its columns are mutually orthogonal. In fact,
R is orthonormal - each column also has unit norm. As for all such orthogonal matrices,
R−1 = RT and thus RTR = RRT = I.

Note that since the inverse of R (which defines the reverse mapping) is its transpose,
the rows of this matrix are the axes of the fixed frame in terms of the axes of the body
frame.

6.1.1 Elementary Rotations:

Consider a coordinate frame with origin O defined by the axes x, y and z. Consider
rotating this frame by an angle θ about one of its axes (where a counter-clockwise
rotation is taken to be positive). The rotation matrices describing the orientation of the
axes x′, y′ and z′ of the rotated frame relative to the original frame after a single such
elementary rotation are

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Note that, for k = x, y, z we have Rk(−θ) = RTk (θ).

6.1.2 Vector Representation:

Consider again two frames with the same origin O but different sets of unit axes. A
vector p can be described in terms of the first frame as p = [px, py, pz]

T and in terms of
the second frame as p′ = [p′x, p

′
y, p
′
z]
T . Since these vectors correspond to the same point

in space, we must have p = p′ and thus

p = p′xx
′ + p′yy

′ + p′zz
′ =

x′ y′ z′

p′

This is, of course, p = Rp′; R is the matrix which transforms the vector from the
second frame to the first. Since R is orthogonal, the inverse transformation is p′ = Rp.

Note that since R is an orthogonal transformation we have
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||Rp′|| = (Rp′)T (Rp′) = p′
T
RTRp′ = p′

T
p′ = ||p′||

The matrix R therefore does not change the norm of the vector but only its direction.

6.1.3 Composition of Rotations

Consider a point p in space and its representations in the frames O0, O1 and O2 having
a common origin O. Let Rji denote the rotation matrix describing the orientation of
frame i with respect to frame j; then we have

p1 = R1
2p

2

We also have, using the equation above,

p0 = R0
1p

1 = R0
1R

1
2p

2

Finally, we can write
p0 = R0

2p
2 = R0

1R
1
2p

2

From the above equation it is obvious that we must have

R0
2 = R0

1R
1
2

Here it is interpreted that a frame aligned with O0 is first rotated into alignment
with O1 with R0

1 and then this frame is rotated into alignment with frame O2 using R1
2.

That is, successive rotations can be applied to a vector via post-multiplication of the
corresponding rotation matrices following the order of rotations. The overall rotation is
therefore expressed as the composition of partial rotations; each rotation is defined with
respect to the axes of the current frame.

When each rotation is made instead with respect to the axes of a fixed frame, the
elementary rotation matrices are premultiplied in the order in which the rotations are
applied.

6.2 Orientation Representations

6.2.1 Euler Angles

Rotation matrices, while intuitive, are inherently redundant as they use nine parameters
to describe a rotation with only three degrees of freedom. Instead, a minimal repre-
sentation can be obtained by using a set of three angles φ = [α, β, γ]T each of which
corresponds to an elementary rotation about one of the coordinate axes. A generic ro-
tation matrix can then be formed by composing a sequence of the three corresponding
elementary rotation matrices.

There are thus 33 = 27 possible combinations of three successive rotations; however,
there are 15 such combinations which produce successive rotations about parallel axes
so there are only 3 ∗ 2 ∗ 2 = 12 valid sets/sequences.



CHAPTER 6. ROBOTICS 140

Rotation Order and Naming

The naming of rotation angle sets/sequences can be extremely confusing and often am-
biguous. Here, we refer to a sequence by (for example) x-y-z which means that a rotation
is first applied about the x-axis, then the y-axis, and finally about the z-axis (see the next
section for clarification about which x,y, and z axes we refer to with such a sequence).

Rotation matrices corresponding to a composite rotation through angles α, β and γ
are formed by multiplying elemental rotations RX(α), RY (β) and RZ(γ) as, for example:

R = RX(α)RY (β)RZ(γ)

This is often referred to as the XY Z rotation sequence because this is the order in
which the elemental rotations appear. However, since we apply successive rotations via
left-multiplication, this rotation actually corresponds to the sequence z-y-x and NOT
x-y-z.

Intrinsic versus Extrinsic Rotations

Rotation sets/sequences are specified as either intrinsic or extrinsic depending on what
frames the specified angles are referring to.

• Intrinsic rotations compose three elemental rotations about mobile axes which are
attached to the rotation object and are specified by sequencies such as x-y’-z” (note
the usage of primes which denote successive new frames).

• Extrinsic rotations compose three elemental rotations about fixed axes which co-
incide with the starting frame of the rotation object, for example the sequence
x-y-z.

Euler Angles versus Tait-Bryan Angles

It’s important to note that there are two formalisms for specifying rotations in terms of
a minimal number of coordinates, both of which are often called Euler angles. Six of the
12 possible valid rotation sequences below to each formalism, as explained below:

• “Proper” Euler angles denote elemental rotation sequences which use the same
axis for the first and third rotations, such as z-x’-z” (intrinsic) or z-x-z (extrinsic).
The six possible sequences are:

– z-x’-z” (intrinsic) or z-x-z (extrinsic)

– x-y’-x” (intrinsic) or x-y-x (extrinsic)

– y-z’-y” (intrinsic) or y-z-y (extrinsic)

– z-y’-z” (intrinsic) or z-y-z (extrinsic)

– x-z’-x” (intrinsic) or x-z-x (extrinsic)

– y-x’-y” (intrinsic) or y-x-y (extrinsic)
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• Tait-Bryan angles always compose elemental rotations about three distinct axes,
for example x-y’-z” (intrinsic) or x-y-z (extrinsic). This convention is arguably
easier to visualize in terms of elemental rotations and is normally used in the
aerospace industry. The six possible sequences are:

– x-y’-z” (intrinsic) or x-y-z (extrinsic)

– z-y’-x” (intrinsic) or z-y-x (extrinsic)

– z-x’-y” (intrinsic) or z-x-y (extrinsic)

– x-z’-y” (intrinsic) or x-z-y (extrinsic)

– z-y’-x” (intrinsic) or z-y-x (extrinsic)

– y-x’-z” (intrinsic) or y-x-z (extrinsic)

Note that the x-y’-z” sequence is known as Roll-Pitch-Yaw (or Roll-Pitch-Yaw
XYZ ), whereas the z-y’-x” (intrinsic) sequence is commonly known as Yaw-Pitch-
Roll (or Roll-Pitch-Yaw ZYX ).

In practice, the difference between proper Euler and Tait-Bryan angles is simply a
matter of nomenclature and all sequences are referred to as Euler angles, as we will do
in the remainder of this section.

Frame Handedness

The ambiguity of handedness refers to the chosen convention for a positive rotation
about an axis; we only consider right-handed frames which means that a positive angle
is a rotation to the right when looking down the axis in the positive direction.

Multiplication Order

Since a point can be represented equivalently as a column vector v or row vector w,
rotation matrices can either pre-multiply column vectors as Rv or post-multiply row
vectors as wR. However, Rv produces an opposite rotation to wR since (wR)T =
RTwT = RT v. Thus, we must post-multiply by RT to obtain the same result. We
only consider representive points as column vectors in this text, therefore rotations are
applied via pre-multiplication as Rv.

Active (alibi) versus Passive (alias) Rotations

There are two ways of interpreting the action of a rotation on a vector:

• The rotation changes the vector itself (active or alibi transformation) within the
same coordinate frame.

• The rotation changes the coordinate frame in which the vector is described (active
or alibi transformation), however the vector always describes the same object.
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When composing rotations from elemental single-axis transformations, we must be
careful to specify whether the elemental rotations use active or passive convention. The
inverse of an active transformation is a passive transformation (their rotation matrices
are simply related via a transpose).

Example: Roll-Pitch-Yaw Angles (x-y’-z” intrinsic)

The Roll-Pitch-Yaw XYZ or simple Roll-Pitch-Yaw angles are often used in robotics
and aeronautics; they are equivalent to what is sometimes referred to as the Euler ZYX
angles. The elemental rotations here are made with respect to a frame attached to the
rotating object. The total rotation is composed as follows:

• Rotate the initial frame by α about the x-axis (roll); this corresponds to the matrix
Rx(α).

• Rotate the current frame by β about the its y’-axis (pitch); this this corresponds
to the matrix Ry(β).

• Rotate the current frame by γ about its z”-axis (yaw); this corresponds to the
matrix Rz(γ).

The resulting orientation is composed via pre-multiplication of the matrices corre-
sponding to the elemental rotations. This yields

R(φ) = Rz(γ)Ry(β)Rx(α) =

cγcβ cγsβsα − sγcα cγsβcα + sγsα
sγcβ sγsβsα + cγcα sγsβcα − cγsα
−sβ cβsα cβcα


The inverse solution is given by

γ = Atan2(R21, R11)

β = Atan2(−R31,
√
R2

32 +R2
33)

α = Atan2(R32, R33)

and is valid for β ∈ (−π/2, π/2). This solution degenerates when cβ = 0 ie when
β = −π/2, π/2; in this case only the sum or difference of γ and α can be determined.

6.2.2 Angle-Axis

A nonminimal representation of the orientation of a rigid body can be obtained by
expressing the orientation as a rotation by θ about a unit vector r = [rx, ry, rz]

T defined
with respect to the frame O. This requires four parameters rather than just three.

In order to arrive at the corresponding rotation matrix we need to use the fixed frame
in which r is defined; we do this by first aligning the axis with the frame via a series of
rotations and then realigning with the direction r as follows:



CHAPTER 6. ROBOTICS 143

• Align r with the z-axis, which is done by first rotating by −α about the z-axis and
then by −β about the y-axis. We are not ready to make rotations with respect to
the fixed frame, which we can formalize.

• Next, rotate by θ about the z-axis.

• Finally, realign with the initial direction of r via a rotation by β about the y-axis
and then a rotation by α about the z-axis.

In total, these steps lead to the rotation matrix

R(θ, r) = Rz(α)Ry(β)Rz(θ)Ry(−β)Rz(−α)

where we note that, since these rotations are made with respect to a fixed frame, we
use premultiplication.

The resulting rotation matrix is then

R(θ, r) =

 r2
x(1− cθ) + cθ rxry(1− cθ)− rzsθ rxrz(1− cθ) + rysθ

rxry(1− cθ) + rzsθ r2
y(1− cθ) + cθ ryrz(1− cθ)− rxsθ

rxrz(1− cθ)− rysθ ryrz(1− cθ) + rxsθ r2
x(1− cθ) + cθ


For this matrix we have R(−θ, r) = R(θ, r) which means that a rotation of −θ

about −r is indistinguishable from a rotation of θ about r. Therefore, the angle-axis
representation is NOT unique.

This can be seen more clearly by considering thje inverse problem. From the above
rotation matrix, we have

θ = cos−1

(
r11 + r22 + r33 − 1

2

)

r =
1

2 sin (θ)

r32 − r23

r13 − r31

r21 − r12


for sθ 6= 0. Note that the three components of r are actually not independent but

are rather constrained by the condition

r2
x + r2

y + r2
z = 1

as would be expected considering that this is a nonminimal representation.
Additionally, if sθ = 0 then the above expressions become meaningless. For null

rotation (θ = 0) the unit vector r becomes arbitrary; this is a singularity.
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6.2.3 Unit Quaternion

The drawbacks of the axis-angle formulation can be overcome by the unit quaternion,
defined by

η = cos
θ

2

ε = sin
θ

2
r

where η is the scalar part of the quaternion and ε = [εx, εy, εz]
T is the vector part.

They are constrained by the condition

η2 + ε2x + ε2y + ε2z = 1

which is why this is called the unit quaternion. Note that a rotation by −θ about
−r gives the same quaternion as that corresponding to a rotation by θ about r, solving
the non-uniqueness problem of axis-angle representation.

Using the above definitions and the results from the axis-angle formulation, the
rotation matrix corresponding to the unit quaternion is

R(η, r) =

2(η2 + ε2x)− 1 2(εxεy − ηεz) 2(εxεz + ηεy)
2(εxεy + ηεz) 2(η2 + ε2y)− 1 2(εyεz − ηεx)

2(εxεz − ηεy) 2(εyεz + ηεx) 2(η2 + ε2z)− 1


The solution to the inverse problem for the unit quaternion is

η =
1

2

√
R11 +R22 +R33 + 1

ε =
1

2

sgn(R32 −R23)
√
R11 −R22 −R33 + 1

sgn(R13 −R31)
√
R22 −R33 −R11 + 1

sgn(R21 −R12)
√
R33 −R11 −R22 + 1


Here it has been assumed that η ≥ 0 which corresponds to an angle θ ∈ [−π, π];

thus, any rotation can be descibed. Note that, in contrast to the axis-angle formulation,
no singularities occur for the unit quaternion.

The quaternion corresponding to R−1 = RT is denoted as Q−1 and is computed as
Q−1 = {η,−ε}.

The quaternion product of Q1 and Q2 corresponding to the product R1R2 is given
by

Q1 ∗Q2 = {η1η2 − ε1T ε2, η1ε2 + η2ε1 + ε1 × ε2}

Note that the product Q1 ∗Q−1
1 = {1,0}.
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Quaternion Conventions

6.3 Quaternion Review and Conventions

It is important to note that there are two different conventions for using quaternions,
each of which is self-consistent; unfortunately, the quaternion algebra used in these
conventions is often mixed up in the literature, resulting in inconsistent implementations
1. We use that proposed as a standard by JPL in a white paper by Breckenridge2 A
review of quaternions using this convention is given in this section.

Briefly, quaternions are one of several choices for representing SO(3), the Lie group of
rotations. The advantage of quaternions over other parameterizations is their numerical
properties, efficiency and lack of singularities. We denote a quaternion by

q =


qx
qy
qz
qw


where qw and qv = [qx, qy, qz]

T are the scalar and vector components, respectively. Note
that the ordering of these components does not depend on any conventions and is purely
a matter of preference. We choose this ordering here to match the literature but actually
implement quaternions in the reverse order to match the SL simulation environment.

All rotations are active, meaning that they act to rotate vectors; the quaternion
representing the base orientation is written as q = qBW which specifies a rotation from
the world frame W to the base frame B. This quaternion corresponds to the rotation
matrix C = C[q] which rotates vectors defined in the world frame into the base frame.

Successive rotations about local axes are composed via left-multiplication, ie RCA =
RCBR

B
A represents a rotation from frame A to frame B (given in terms of the frame A

basis) followed by a rotation from frame B to frame C (given in terms of the frame B
basis). Analogously, we have qCA = qCB ⊗ qBA for quaternions where ⊗ denotes quaternion
multiplication.

A vector in frame A is rotated into frame C as vC = RCAv
A, with the reverse transfor-

mation given by vA = (RCA)−1vC where (RCA)−1 = RAC = (RCA)T since this is a rotation
matrix (orthogonal matrix with det = +1). Vector rotations using quaternions are
achieved through conjugation as

vC = qCA ⊗
(
vA

0

)
⊗ (qCA)−1

1http://www.ladispe.polito.it/corsi/meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_

1993h_J_Repsurv_scan.pdf
2This technical report seems to have mysteriously vanished from the internet as investigated by http:

//fzheng.me/2017/11/12/quaternion_conventions_en/, who also suggests that the other convention
(as originally proposed by Hamilton) may be a better choice as it’s used by popular libraries. We use the
JPL convenion solely because it was used in a previous work on which our base state estimation paper
was based. In any case, one must remain consistent within the same work.

http://www.ladispe.polito.it/corsi/meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf
http://www.ladispe.polito.it/corsi/meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf
http://fzheng.me/2017/11/12/quaternion_conventions_en/
http://fzheng.me/2017/11/12/quaternion_conventions_en/
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where [vA, 0]T is called a pure quaternion and (qCA)−1 = qAC = [−qx,−qy,−qz, qw] is
the inverse or conjugate quaternion satisfying qCA ⊗ (qCA)−1 = (qCA)−1 ⊗ qCA = qI where
qI = [0, 0, 0, 1] is the identity quaternion.

Quaternion multiplication is defined by

q ⊗ p =


qwpx + qzpy − qypz + qxpw
−qzpx + qwpy + qxpz + qypw
qypx − qxpy + qwpz + qzpw
−qxpx − qypy − qzpz + qwpw


This can be written more concisely as the matrix vector multiplication

q ⊗ p = L(q)p =

(
qwI − q×v qv
−qTv qw

)(
pv
pw

)
= R(p)q =

(
pwI + p×v pv
−pTv pw

)(
qv
qw

)
where qv = [qx, qy, qz]

T is the vector part of q and

q×v =

 0 −qz qy
qz 0 −qx
−qy qx 0


is the skew-symmetric matrix corresponding to the vector qv.

The rotation matrix corresponding the quaternion q is given by

C[q] = (2q2
w − 1)I − 2qwq

×
v + 2qvq

T
v

=

 2q2
x + 2q2

w − 1 2(qxqy + qzqw) 2(qxqz − qyqw)
2(qxqy − qzqw) 2q2

y + 2q2
w − 1 2(qyqz + qxqw)

2(qxqz + qyqw) 2(qyqz − qxqw) 2q2
z + 2q2

w − 1


where the first equation can be seen as equivalent to Rodrigues’ identity using the

quaternion exponential map

exp (ω) =

(
sin ( ||ω||2 ) ω

||ω||
cos ( ||ω||2 )

)
which represents a rotation of ||ω|| about an axis ω/||ω|| as a quaternion. Letting δφ be
an infinitesimal rotation, we see that

δq = exp (δφ) ≈
(

1
2δφ
1

)
is the first-order approximation of an incremental quaternion. It follows from the defi-
nition of C[q] that we have the first-order approximation

C[δq] ≈ I − δφ×
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This can also be seen as the first-order approximation of the exponential map for rotation
matrices

exp (δφ×) =
∞∑
i=0

(−δφ×)i

i!
≈ I − δφ×

It follows that the first-order expansion of q about a nominal quaternion q̄ can be written
in matrix form as

C[δq ⊗ q̄] = C[δq]C[q̄] = (I − δφ×)C̄

where C̄ = C[q̄]. This approximation will be used in the derivations of the linearized
filter dynamics in the next section.

The derivative of a quaternion is related to the angular velocity ω by the equation

q̇ =
1

2

(
ω
0

)
⊗ q

and the first-order approximation of δ̇q is given by

δ̇q ≈
(

1
2δφ̇
0

)
6.3.1 Homogeneous Transformations

The pose (position and orientation) of a rigid body in space (a point P with body-fixed
frame O1) is fully specified with respect to a reference frame O0 by a vector o0

1 describing
the origin of Frame 1 with respect to Frame 0 and a rotation matrix R0

1 describing the
orientation of Frame 1 with respect to Frame 0.

The position of point P in Frame 0 is then

p0 = o0
1 +R0

1p
1

This specifies a coordinate transformation of a vector between the two frames. The
inverse transformation comes from premultiplying both sides of the above equation by
R0

1
T

= R1
0 and solving for p1; this leads to

p1 = −R1
0o

0
1 +R1

0p
0

These transformations can be expressed in a more compact form by converting to
homogeneous representations given by

p̃0 = A0
1p̃

1

(̃p)1 = A1
0p̃0 = (A0

1)−1p̃0

where p̃ = [p, 1]T and the homogeneous transformation matrix A0
1 is defined to be

A0
1 =

(
R0

1 o0
1

0T 1

)
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and, from above,

A1
0 =

(
R1

0 −R1
0o

0
1

0T 1

)
It is important to note that, in general, homogeneous transformation matrices are

NOT orthogonal.
When the frames have the same origin, the homogeneous matrix reduces to the

orientation matrix; when the frames have different origins, the total rotation is composed
as

p̃0 = A0
1A

1
2 · · ·An−1

n p̃n

as was previously done for orientation matrices. Note here that postmultiplication is
used because these matrices are all defined with respect to the preceding frame (these are
partial rotations; this will be useful in defining a systematic way to transform between
links of a robot manipulator).

6.3.2 Tracking Orientation

Here we will consider tracking the orientation of a body - represented by a rotation
matrix - in terms of the instantaneous angular velocity of that body3.

The goal is to derive a differential equation which describes the dynamics of the
orientation matrix R in terms of the angular velocity vector ω = [ωx, ωy, ωz]

T . If the
attitude of the body at time t is given by R(t) then the rate of change is given by

Ṙ(t) = lim
δt→0

R(t+ δt)−R(t)

δt

Here the orientation at time t+ δt can be written as the product of the orientation
at time t and a matrix A(t) which is the rotation matrix of the body frame from time t
to time t+ δt. Thus,

R(t+ δt) = R(t)A(t)

This matrix A(t) is the product of three elementary rotations about the body frame
axes; when δt is sufficiently small, the order of these rotations doesn’t matter and the
update matrix becomes

A(t) = I + δΨ =

 1 −ψ θ
ψ 1 −φ
−θ φ 1


where

3See the following report by Oliver Woodman for more details: https://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-696.pdf

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf
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δΨ =

 0 −ψ θ
ψ 0 −φ
−θ φ 0


Thus,

Ṙ(t) = lim
δt→0

R(t+ δt)−R(t)

δt

= lim
δt→0

R(t)A(t)−R(t)

δt

= lim
δt→0

R(t)(I + δΦ)−R(t)

δt

= R(t) lim
δt→0

δΦδt

= C(t)Ω(t)

where, in the limit, we have

lim
δt→0

δΦ

δt
= Ω(t) =

 0 −ωz(t) ωy(t)
ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0


which is the skew-symmetric form of the angular velocity vector ω(t) representing

the angular velocity of the body with respect to the body frame at time t.
Thus, the differential equation governing the time evolution of the orientation matrix

Ṙ(t) = R(t)Ω(t) has the solution

R(t) = R(0) exp

(∫ t

0
Ω(t)dt

)
where R(0) is the attitude at time t = 0.
For a single period [t, t+ δt] the solution can be written as

R(t+ δt) = R(t) exp

(∫ t+δt

t
Ω(t)dt

)
where, assuming a first-order integration scheme (rectangular rule) is used to inte-

grate the sampled angular velocity, we have

B =

∫ t+δt

t
Ω(t)dt = σ

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


where σ = ||ω||2δt. Here the components of the vector ω have been normalized such

that (ω2
x + ω2

y + ω2
z) = 1 (this normalization simplifies the characteristic polynomial).

The characteristic polynomial of B is then (for this particular form of B)
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p(λ) = det(B − λI) = −λ3 − σ2λ

by the Cayley-Hamilton theorem we have that p(B) = 0 and thus

−B3 − σ2B = 0→ B2 = −σ2

The power series expansion of the matrix exponential of B, using the above fact, thus
yields

exp (B) =

∞∑
i=0

Bi

i!

=

(
I +B +

B2

2!
+
B3

3!
+
B4

4!
+ · · ·

)
=

(
I +B +

B2

2!
− σ2B

3!
− σ2B2

4!
+ · · ·

)
=

(
I +

(
1− σ2

3!
+
σ4

5!
+ · · ·

)
B +

(
1

2!
− σ2

4!
+
σ4

6!
+ · · ·

)
B2

)
=

(
I +

sinσ

σ
B +

1− cosσ

σ2
B2

)
Therefore, the update equation for the orientation matrix becomes

R(t+ δt) = R(t)

(
I +

sinσ

σ
B +

1− cosσ

σ2
B2

)
6.3.3 Rotation Matrices

A rotation matrix is an orthogonal matrix with unit determinant. In fact, it is an
orthonormal matrix because the 2-norm of each of its rows and columns is 1. It expresses
a transformation which rotates a vector but does not change its magnitude (since, for
any orthogonal matrix Q in general, ||Qx||2 = (Qx)T (Qx) = xTQTQx = xTx = ||x||2
since QTQ = I).

In 3-dimensional space the rotation matrices corresponding to rotations about the x,
y, and z axes are, respectively:

Rx =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ



Ry =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ
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Rz =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


Any rotation can be expressed as the product R = RxRyRz, noting that in general

these matrices do not commute.
In the context of numerically integrating the angular velocity about the three axes,

if the timestep δt used for integration is sufficiently small then the small angle approxi-
mations for sine and cosine hold. This results in

R = RxRyRz ≈

 1 −ψ θ
ψ 1 −φ
−θ φ 1


where the order in which rotations are applied about the individual axes no longer

matters.

6.4 Direct Kinematics

A robotics manipulator consists of a series of rigid bodies or links connected by means of
joints. Joints can be of two types: revolute or rotational and prismatic or translational.
The entire structure of the manipulator is formed by the links and joints and is known
as a kinematic chain. One end of the chain is constrained to a base while the other end
is usually connected to an end-effector for manipulation of objects in space.

There are two types of chains: open and closed chains. Here we will consider only
open chains, which are defined as chains in which there is only one sequence of links
which connects the base to the end-effector. Closed chains, on the other hand, are more
complicated because their links form loops.

The term posture is used to describe the pose of all the rigid bodies composing the
chain; the posture is described by the number of degrees of freedom (DOFs) of the
manipulator structure. Each DOF typically corresponds to the ability to articulate a
joint and is thus termed a joint variable. The goal of direct kinematics is to find a
mapping - via a sequence of homogeneous transformations - which descibes the pose of
the end-effector with respect to the base in terms of the joint variables.

The direct kinematics function is thus the transformation matrix

T be (q) =

(
nbe(q) sbe(q) abe(q) pbe(q)

0 0 0 1

)
where q is the vector of joint variables, Rbe(q) = [nbes

b
ea
b
e] is the rotation matrix

describing the orientation of the end-effector frame with respect to the base frame and
pbe is the position of the origin of the end-effector frame with respect to the origin of the
base frame. Note that all parts of this transformation are functions of the joint variables,
ie T be is configuration-dependent!
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Consider an open chain of n+ 1 links connected by n joints. It is assumed that Link
0 is fixed and each joint provides the structure with a single degree of freedom (com-
plex joints such as a spherical joint are treated as combinations of single-DOF joints).
Attached to each link from 0 to n is a coordinate frame; the coordinate transformation
from frame n to frame 0 is then

T 0
n(q) = A0

1(q1)A1
2(q2) · · ·An−1

n (qn)

where each homogeneous transformation is incremental (defined relative to the pre-
ceding link) and is thus a function of only one joint variable. The direct kinematics
function from the end-effector to the base also requires transformations from link 0 to
the base and from link n to the end-effector; these are typically constant transformations.
The direct kinematics function is thus written as

T be (q) = T b0T
0
n(q)Tne

6.4.1 Denavit-Hartenberg Convention

The Denavit-Hartenberg Convention is a method for choosing the link frames such that
computation of the direct kinematics function is accomplished in a general, systematic
fashion. The frame corresponding to the ith link is located at joint i− 1 and is defined
as follows:

• Choose the z-axis zi of each frame through the axis of the joint.

• Locate the origin of the frame at the intersection of zi and the common normal to
zi and zi−1. If zi and zi−1 intersect, this is the location of the origin.

• Choose the x-axis xi along the common normal to zi and zi−1. If these z-axes
intersect, choose xi to be zi−1 × zi.

• Finally, choose yi to complete a right-handed coordinate frame.

Thus, in total, there are n links and n + 1 joints/frames. For each link the DH
convention specifies four parameters:

• θ is the angle between xi and xi−1 about zi−1 (only variable for a revolute joint).

• di is the distance between the origins of frames i and i − 1 along the direction of
axis zi−1 (only variable for a prismatic joint).

• αi is the angle between axes zi−1 and zi about xi.

• ai is the distance between the axes zi−1 and zi along the direction of axis xi
(common normal between z-axes).
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Note that only one of θi and di can be variable for each link. In this setup, Link i
is located between Frames i and i − 1; the homogeneous transformation between these
frames is given by

Ai−1
i (qi) =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1


Note that the transformation from Frame i to Frame i−1 is a funbction only of joint

variable qi which is either θi (revolute joint) or di (prismatic joint); all other parameters
in this matrix are fixed.

6.4.2 Joint and Operational Space

If a task is to be specified in terms of trajectories for the end-effector, then one must
work in the operational space defined by the m× 1 vector

xe =

(
pe

mathbfphie

)
where pe is the position of the manipulator and phie is its orientation; together these

specify the end-effector’s pose.
On the other hand, the joint space is defined by the n× 1 vector of joint variables

q =


q1

q2
...
q3


Of course, the operational space variables can be extracted from the homogeneous

transformation matrix Abe(q) discussed above. We can also write the mapping directly
as

xe = k(q)

where k() is a (typically nonlinear) vector function which performs the mapping from
joint space to operational space.

The most general operational space hasm = 6 and thus uses a minimal representation
for the orientation of the end-effector; in this case φe cannot be computed directly from
the joint variables (in closed form) and thus this computation must go through the
rotation matrix (since the homogeneous transformation gives us the rotation matrix Rbe
and we know how to compute φe from Rbe as was discussed in a previous section).
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6.4.3 The Workspace

When dealing with the operational space (pose of the end-effector), it is essential to
know the possible spatial configurations which the manipulator can attain. The reachable
workspace is the region in space which the origin of the end-effector frame can reach with
at least one orientation; the dexterous workspace is the region which the origin of the
end-effector can reach while attaining multiple orientations. The dexterous workspace
is thus a subspace of the reachable workspace.

The reachable workspace is the geometric locus of points that can be reached by
considering the direct kinematics equation

pe = pe(q) qmin ≤ q ≤ qmax

where pe() is a continuous vector function (it is just the position part of the function
k() introduced earlier) and qmin and qmax are the joint limits for all the joint variables.

6.4.4 Kinematic Redundancy

A manipulator is kinematically redundant when it has a number of DOFs greater than
the number of variables needed to describe a given task ie when n > m. Note, however,
than a manipulator can still be functionally redundant if m = n and only r < n variables
are needed to specify a given task. Thus, redundancy is truly a function of the task being
specified. For example, the three-DOF planar arm has n = 3 and m = 3 (since the pose
of the end-effector in the plane is fully specified by its position and angle). When only
the position is specified for a given task, however, r = 2 and the manipulator becomes
functionally redundant.

6.4.5 Inverse Kinematics

Most tasks are specified in terms of trajectories in operational space, yet the robot must
be controlled in the joint space. For this reason we need an inverse mapping from xe to
q.

The issue is that the direct kinematics mapping xe (which comes from T be ) is usually
nonlinear; if this were not the case, we could simply write xe = Kq and solve the linear
system for the vector of joint variables.

Aside from this issue of nonlinearity, there are other problems inherent to the me-
chanical nature of the manipulator. There may be multiple - or even infinite - solutions
to the inverse problem. Note that multiple solutions for the same end-effector pose
depend not only on the number of DOFs but also the number of non-null DH parame-
ters. On the other hand, if the operational space trajectory moves outside the dexterous
workspace of the robot then there will be no solutions.

Closed-form solutions to the inverse kinematics problems require either algebraic/-
geometric intuition. On the other hand, numerical solution techniques offer alternatives
which can be applied to any manipulator but in general do not allow for the computation
of all possible solutions.
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6.5 Differential Kinematics

We have already discussed the problems of direct and inverse kinematics which deal
with the relationship between the joint space and operational space variables. Now we
discuss the problems of direct and inverse differential kinematics which deal with the
relationship between the joint space and operational space velocities. This mapping is
described by a matrix called the Jacobian.

There are two ways to arrive at such a mapping - the first is called the geometric
Jacobian and the second is called the analytical Jacobian.

The geometric Jacobian is derived in a manner similar to that of the direct kinematics
function in which one sums up the contributions of each individual joint velocity to the
total end-effector velocity; this mapping is configuration-dependent.

The analytical Jacobian results from differentiating the direct kinematics function
(when this function describes the pose with reference to a minimal representation in
operational space) with respect to the joint variables.

6.5.1 Geometric Jacobian

For an n-DOF manipulator we have the direct kinematics equation

Te(q) =

Re(q) pe(q)

0T 1


It is desired to express the end-effector linear velocity ṗe and the end-effector angular

velocity ωe in terms of the joint velocities q̇. It will be shown that these relations are
both linear in the joint velocities and are given by

ṗe = JP (q)q̇

ωe = JO(q)q̇

where JP ∈ R3×n and JO ∈ R3×n are the Jacobian matrices relating the contributions
of the joint velocities to the end-effector linear and angular velocities, respectively. We
can write this in compact form as the differential kinematics equation

ve =

(
ṗe
ωe

)
= J(q)q̇

where

J =

(
JP
JO

)
is the manipulator geometric Jacobian which is, in general, a function of the manip-

ulator configuration. This matrix is derived as follows.



CHAPTER 6. ROBOTICS 156

First, consider the time derivative of a rotation matrix R = R(t). Since such a matrix
is orthogonal,

R(t)R(t)T = I

Differentiating this expression with respect to time yields

R(t)ṘT (t) + Ṙ(t)RT (t) = 0

Defining S(t) = Ṙ(t)R(t)T we have

S(t) + ST (t) = 0

which implies that the matrix S(t) must be skew-symmetric since the sum of it and
its transpose equals the zero matrix.

Since R−1(t) = R(t) we can solve our expression for S(t) to yield

Ṙ(t) = S(t)R(t)

which is the differential equation relating the rotation matrix to its derivative via
the skew-symmetric operator S.

Consider a constant vector p′ in a rotating reference frame described by R(t) and its
image p(t) = R(t)p′ in the fixed frame in which R(t) is defined. Taking the derivative
of p(t) yields

ṗ(t) = Ṙ(t)p′

which, using the definition of the derivative of a rotation matrix, can be written as

ṗ(t) = S(t)R(t)p′

From mechanics, however, we know that this is simply given by ṗ(t) = ω(t)×p(t) =
ω(t) × R(t)p′ where ω(t) = [ωx, ωy, ωz]

T is the angular velocity of the rotating frame
with respect to the reference frame at time t.

This means that we must have

S(ω(t)) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


We can thus write Ṙ = S(ω)R. Further, for a rotation matrix we have the property

RS(ω)RT = S(Rω)

Now consider the coordinate transformation of a point P from Frame 1 to Frame 0
given by

p0 = o0
1 +R0

1p
1
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Differentiating this expression with respect to time yields

ṗ0 = ȯ0
1 +R0

1ṗ
1 + Ṙ0

1p
1

= ȯ0
1 +R0

1ṗ
1 + S(ω0

1)R0
1p

1

= ȯ0
1 +R0

1ṗ
1 + ω0

1 × r0
1

where r0
1 = R0

1p
1 represents the point P after it has been rotated into Frame 0 but

not translated, ie r0
1 = p0 − o0

1. This is known as the velocity composition rule. If the
point P is fixed in Frame 1 then this reduces to

ṗ0 = ȯ0
1 + ω0

1 × r0
1

Now consider deriving the relationships between the linear and angular velocities of
successive frames. Using the same DH convention for choosing link frames, it can be
shown that

ṗi = ṗi−1 + v̇i−1,i + ωi−1 × ri−1,i

gives the linear velocity of Link i as a function of the translational and rotational
velocities of Link i−1. Note that all vectors are expressed with respect to a fixed Frame
0 and that vi−1,i denotes the velocity of the origin of Frame i with respect to the origin
of Frame i− 1 as expressed in terms of Frame 0. In addition,

ωi = ωi−1 + ωi−1,i

gives the angular velocity of Link i as a function of the angular velocities of Link
i− 1 and of Link i with respect to Link i− 1 (ωi−1,i).

Using these general results, we have that for a prismatic joint

ωi = ωi−1

since the orientation of Frame i with respect to i − 1 does not change when Joint i
is moved and thus ωi−1,i = 0. For the linear velocity we have

ṗi = ṗi−1 + ḋizi−1 + ωi × ri−1,i

since this joint is articulated in the direction of axis zi.
For a revolute joint we have

ωi = ωi−1 + θ̇izi−1

and

ṗi = ṗi−1 + ωi × ri−1,i
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6.5.2 Jacobian Computation

Consider the expression ṗe(q) relating the end-effector position to the joint variables.
Differentiating this yields

ṗe =
n∑
i=1

∂pe
∂qi

q̇i =
n∑
i=1

JP iq̇i

due to the chain rule. Thus, the linear velocity of the end-effector can be obtained
as the sum of n terms, each of which represents the contribution of a single joint to the
end-effector linear velocity when all other joints are still.

Thus, we have JP i = zi−1 for a prismatic joint and JP i = zi−1 × (pe − pi−1) for a
revolute joint.

The angular velocity of the end-effector is given by

ωe = ωn =
n∑
i=1

ωi−1,i =
n∑
i=1

JOiq̇i

and thus for a prismatic joint JOi = 0 and for a revolute joint JOi = zi−1.
In summary, the full Jacobian is formed from 3× 1 vectors JP i and JOi as

J =

JP 1 JP 2 · · · JP n

JO1 JO2 · · · JOn


where we have

(
JP i
JOi

)
=



(
zi−1

0

)
for a prismatic joint(

zi−1 × (pe − pi−1)

zi−1

)
for a revolute joint

The vectors on which the Jacobian depends are functions of the joint variables and
can be computed from the direct kinematics relations as follows.

• zi−1 is given by the third column of the rotation matrix R0
i−1; if z0 = [0, 0, 1]T then

zi−1 = R0
1(q1) · · ·Ri−2

i−1(qi−1)z0.

• pe is given by the first three elements of the fourth coumn of the homogeneous
transformation matrix T 0

e = A0
1(q1) · · ·An−1

n (qn).

• pi−1 is given by the first three elements of the fourth column of the homogeneous
transformation matrix T 0

i−1 = A0
1(q1) · · ·Ai−2

i−1(qi−1)

Finally, note that the Jacobian has been developed here to describe the end-effector
velocities with respect to the base frame. If it is desired to represent the Jacobian with
respect to a different Frame u then the relation is
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Ju =

(
Ru 0
0 Ru

)
J

Kinematic Singularities

To summarize the preceding section, the Jacobian (geometric or analytical) defines the
linear mapping

ve = J(q)q̇

between the joint velocities q̇ and end-effector velocities ve = [ṗTe , ω
T
e ]T . It is, in

general, a function of the configuration of the manipulator - that is, J = J(q); as a
result, there may be certain configurations in which the Jacobian becomes rank-deficient.
These are called kinematic singularities.

Such configurations may represent points at which

• The mobility of the manipulator is reduced.

• Infinite solutions to the inverse problem may exist (there is redundancy present).

• Small operational-space velocities may cause large joint space velocities.

As a result, it is desired to be aware of singularities for a given manipulator so as
to avoid them if possible. There are two types of singularities: boundary singularities
which occur when the manipulator is at the boundary of its workspace and internal
singularities which occur inside the workspace for particular end-effector configurations.
Boundary singularities can be avoided if one knows the limits of the workspace but
internal singularities can occur anywhere in the workspace.

Since a matrix becomes non-invertible when rank-deficient, it is theoretically possible
to determine a manipulator’s internal singularities by analyzing when the determinant
of the Jacobian goes to zero. This, however, is only useful in practice for simple manip-
ulators.

Redundancy

As introduced previously, the redundancy of a manipulator is a function of the number n
of DOFs of the structure, the number m of operational space variables and the number
r of operational space variables necessary to specify a given task. In this case it is more
useful to consider

ve = J(q)q̇

where ve ∈ Rr×1 is the vector of operational space variables needed for the given
task, J(q) ∈ r×n is the relevant portion of the geometric Jacobian and q̇ ∈ Rn×1 is the
vector of joint velocities (this vector remains the same).
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Thus, if r < n then the system is underdetermined or redundant; there are more
variables than are needed to specify the task. Assuming full (row) rank, the dimensions
of the column space R(J) and row space R(JT ) are only r and thus since

dim(R(J)) + dim(N(JT )) = r

dim(R(JT )) + dim(N(J)) = n

we have that the dimension of the nullspace is n− r. There are thus n− r dependent
columns in J and therefore infinite solutions for the joint velocities given desired end-
effector velocities in the inverse problem. The solution is thus of the form

q̇ = q̇ ∗+Rq̇0

where P ∈ Rn×n is a matrix specifying a basis for N(A) and q̇0 ∈ Rn×1 is an arbitrary
vector of joint velocities. This vector maps to the nullspace through the Jacobian and
thus does not affect the end-effector velocity; we can exploit this by choosing q̇0 to
generate desireable internal motions which do not change ve.

NOTE: I don’t understand why P would be n × n when the dimension of N(A) is
only n − r. Why not P ∈ Rn×n−1? I understand this would make q̇0 a different size
than q̇ but the P presented itself is redundant which seems strange.

Note that the concepts of singularities, intrinsic redundancy and functional redun-
dancy are all closely related. A manipulator which has more DOFs than are needed to
fully specify the end-effector pose (n > m) is intrinsically redundant; the corresponding
system is underdetermined. A manipulator which has m = n can become functionally
redundant when only r < m operational space variables are specified for a task; this
system is also underdetermined. Finally, when an intrinsically-redundant manipulator
(n > m) reaches a singularity, it becomes even more redundant.

In all of this discussion we have not mentioned the case in which m > n - that is,
the overdetermined case. In this situation there can only be a solution to the inverse
problem if the desired operational space velocity lies within the column space R(J);
otherwise, there is no solution. We can consider a least-squares solution by projecting
the desired velocity onto R(A) and solving instead for the joint velocities corresponding
to this approximation but this may not be useful. Assuming that the manipulator is
designed to have n ≥ m DOFs, the corresponding system may become overdetermined
only when n = m and the manipulator reaches a singularity.

6.5.3 Inverse Differential Kinematics

In a previous section, we derived the solution to the direct kinematics problem and saw
that, in general, it is a nonlinear function of the joint positions q; the relation was

xe = k(q)

Given that this system is nonlinear, one can solve the corresponding inverse solution
in closed form only for simple manipulators.
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Instead, it would be much preferred to work with a system which is linear in the
joint variables. As we have seen, the differential kinematics problem is described by

ve = J(q)v̇e

and is thus linear in the joint velocities q̇. The fact that the Jacobian itself is a
(likely nonlinear) function of the joint variables q is not an issue. We can thus solve the
inverse problem through the differential kinematics formulation instead, solving directly
for q̇ and (numerically) integrating the solution to obtain q (assuming the initial joint
state q(0) is known).

Of course, if the dimension of the operational space relevant to the given task is
r = n then the Jacobian is square and full rank and thus

q̇ = J−1(q)ve

is the solution obtained through inversion of the Jacobian.

Inverse Kinematics and Redundancy

The above solution is only valid when the Jacobian is full rank; if the manipulator is
redundant then r < n and the system is underdetermined. As is known for such systems,
there are infinite solutions for q̇; one logical choice is to choose the solution which satisfies
the differential kinematics relation and minimizes the quadratic cost function

g(q̇) =
1

2
q̇TW q̇

where W ∈ Rn×n is a positive definite weighting matrix. This can be expressed as
the minimization of the Lagrangian (modified cost function)

g(q̇, λ) =
1

2
q̇TW q̇ + λT (ve − J q̇)

with respect to the joint velocity. Note that the differential kinematics relation is
expressed as an equality constraint; this ensures it will be satisfied. In this way, the
minimization of the cost function becomes a secondary objective in the optimization.

The resulting solution is

q̇ = W−1JT (JW−1JT )−1ve

If the weighting matrix is simply chosen to be the identity matrix in Rn (diagonal W
with equal weights for all joint velocities) then the above solution becomes the minimum
norm solution

q̇ = J†ve

where
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J† = JT (JJT )−1

is the right pseudoinverse of J . The obtained solution thus satisfies the differential
kinematics relation and has the minimum norm among all possible solutions (see the
section on underdetermined systems for more information).

As mentioned previously, since there are n−r dependent columns in J we are free to
choose a solution of the form q̇ = q̇ ∗+P q̇0 where the columns of P are in the nullspace
of J . . .

We must note that the above solutions are only valid when J has full row rank r;
in this case, the dimension of the left nullspace N(JT ) of J is zero because the rows of
J are independent. Thus dim(R(J)) = r and the columns of J span all of Rr (the fact
that they are redundant doesn’t change this).

If J is rank-deficient then the left nullspace becomes non-null; the column space no
longer spans Rr and therefore there are no solutions to the inverse problem unless ve
happens to lie within the subspace of Rr defined by R(J) (and then there are infinite
solutions due to redundancy).

Note that this differs from the case in which r < n which can (theoretically) be solved
by least-squares because here the rank is less than both r and n (least squares requires
r > n and full column rank). In short, there are infinite solutions to the least-squares
approximation (the problem in which ve is projected onto R(J)). This occurs when a
redundant manipulator is at a configuration singularity.

Even if singularities are avoided, there are still issues with the inverse problem when
the manipulator is in the neighborhood of a singularity. When the Jacobian is nearly
singular its condition number K(J) becomes very large; the right-pseudoinverse involves
the term (JJT )−1 which has a condition number of approximately K(J)2, making the
solution prone to error. In this case one might use a QR-based psuedoinverse or the
damped (regularized) least-squares inverse

J∗ = JT (JJT + k2I)−1

which results from minimizing the sum of the norm of the residual ve − J(q̇)q̇ (as
is done in the overdetermined case) plus the norm of the joint velocities (as is done in
the underdetermined case). The parameter k is used to establish the relative weight
between these two optimization objectives. Note that this is both the unique solution in
the rank-deficient case and a “better-conditioned” solution in the nearly-singular case.
Whereas the original problem would result in large joint velocities in the neighborhood
of a singularity, the damped (regularized) problem keeps results in smaller velocities by
essentially putting a prior on the solution which says that the joint velocities should be
small (close to zero).

Note that the damped left-pseudoinverse

J∗ = (JTJ + k2I)−1JT
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is equal to the damped right-pseudoinverse. The reason we choose the right inverse
is because when J ∈ Rm×n with n > m then (JJT + k2I) ∈ Rm×m is more efficient to
invert than (JTJ + k2I) ∈ Rn×n.

Jacobian Transpose Method for Inverse Kinematics:

Consider the inverse kinematics problem

ẋ = Jq̇

which entails solving for the joint trajectory q̇ corresponding to a desired end-effector
trajectory ẋ. Suppose that instead of a desired trajectory, we wish to move from a point
x to a point g representing the goal. Define the error to be e = g − x and then choose

∆θ = αJT e

(where α is a positive constant and J is the manipulator Jacobian) in order to update
θ at each timestep. Recall that the relationship between forces on the end effector and
joint torques is given by

τ = JTF

The Jacobian Transpose method thus simulates the effect of a sprint with constant
α pulling the end-effector towards the goal! Assuming that a small change ∆s in end-
effector position corresponds to a small change ∆θ in joint positions through the differen-
tial relationship ∆s = J∆θ, we choose α at each timestep in order to make ∆s = αJJT e
as close as possible to e. In other words, we choose α according to

argmin
α
||e− αJJT e||2

from which we find

||e− αJJT e||2 = (e− αJJT e)T (e− αJJT e)
= (eT − αeTJJT )(e− αJJT e)
= eT e− 2αeTJJT e+ α2eTJJTJJT e

We can’t do anything to reduce the first term, so we solve for α such that the other
terms cancel. We have

2α||JT e||2 = α2||JJT e||2

from which it follows that (neglecting the factor of two)

α =
||JT e||2

||JJT e||2
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6.5.4 Analytical Jacobian

Whereas the geometric Jacobian was computed in a systematic manner for a manipulator
by considering the contribution of each joint velocity to the end-effector velocity, the
analytical Jacobian is computed directly from differentiation of the direct kinematics
equation

xe =

(
pe
φe

)
If this end-effector pose is known in terms of a minimal number of operational space

variables (we have m = 6 for a manipulator in R3) then

ṗe =
∂pe
∂q

q̇ = Jpq̇

specifies the translational velocity of the end-effector frame with respect to the base
frame and

φ̇e =
∂φe
∂q

q̇ = Jφq̇

specifies the time derivative of the orientation of the end-effector frame in the chosen
minimal representation. Note that, in general, φ̇e 6= ω and that computation of Jφ(q̇)
usually goes through the computation of the rotation matrix since φe(q) is not usually
available in direct form.

The differential kinematics equation obtained from differentiating the direct kine-
matics equation is thus

ẋe =

(
ṗe
φ̇e

)
=

(
JP (q)
Jφ(q)

)
= JA(q)q̇

where

JA(q) =
∂k(q)

∂q

is the analytical Jacobian which is different from the geometric Jacobian J because
φ̇e 6= ωe.

Note, however, that we can transform between the time derivative of the minimal
representation of orientation and the angular velocity as

ωe = T (φe)φ̇e

where the matrix T (φe) is a transformation matrix specific to the minimal represen-
tation used.

While the time derivative of end-effector orientation is represented differently in the
two Jacobians, the linear velocity of the end-effector is the same for both. Thus, we can
transform between the two representations using
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ve = TA(φ)ẋe

where

TA(φ) =

(
I 0
0 T (φe)

)
transforms between end-effector pose representations. Thus, we have that the trans-

formation between Jacobians is

J = TA(φ)JA

6.5.5 Inverse Kinematics Algorithms

6.6 Principle of Virtual Work

The main idea behind the principle of virtual work is that nature in some way optimizes
the trajectory resulting from the differential equations which describe the motion of a
physical system. It is derived from the principle of least action.

Consider the motion of a particle between two points in space. If a force acts on
this particle as it moves then one can compute the work done by the force along any
possible path between the two endpoints. The principle of virtual work states that he
path which the particle actually follows is the one for which the difference between the
work done on this path and the work done on nearby paths is zero. This implies that
the work done is minimized by this path; this analysis thus involves the computation of
the difference in a function evaluated on nearby paths which is a generalization of the
derivative and is formalized by the branch termed the calculus of variations.

Consider a particle which moves along a trajectory r(t) from point A to point B due
to an applied force F . The total work done by the force along this path is then∫ B

A
F · dr

where dr is a differential element along the curve r(t). Written in terms of the
velocity v(t) along the path, the expression for the work done is∫ t1

t0

F · vdt

Now consider the work done in moving between the same endpoints but along a
slightly different path given by

r̄(t) = r(t) + δr(t)

where δr(t) = εh(t) Here ε is a positive scaling constant and h(t) is an arbitrary
function with h(t0) = h(t1) = 0 so that r̄(t) = r(t) at the endpoints. The work done
along this path is then
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W̄ =

∫ B

A
F · d(r + εh) =

∫ t1

t0

F · (v + εḣ)dt

The difference in the work between the two paths is then

δW = W − W̄ =

∫ t1

t0

(F · εḣ)dt

Assuming that r(t) and h(t) depend on the generalized coordinates qi, i = 1, · · · , n
then the derivative of the variation δr(t) = εh(t) is given by

d

dt
δr = εḣ = ε

(
∂h

∂q1
q̇1 + · · ·+ ∂h

∂qn
q̇n

)
where the chain rule has been used. We thus have

δW =

∫ t1

t0

(
F · ∂h

∂q1
εq̇1 + · · ·+ F · ∂h

∂qn
εq̇n

)
dt =

∫ t1

t0

(
F · ∂h

∂q1

)
εq̇1dt+· · ·+

∫ t1

t0

(
F · ∂h

∂qn

)
εq̇ndt

Therefore, in order for the virtual work δW to be zero for an arbitrary variation we
require that

Fi = F · ∂h
∂qi

= 0, i = 1, . . . , n

where the terms Fi are called the generalized forces associated with the virtual dis-
placement.

6.7 D’Alembert’s Principle of Virtual Work

The virtual work of the N particle system is computed as the sum of the dot product
of each force with the virtual displacement of its point of application

δW =
N∑
i=1

Fi · δri

WHY THE SUM?? WHAT HAPPENED TO INTEGRATION??
If the trajectory of the rigid body is defined by the M generalized coordinates qj

then

δri =
M∑
j=1

∂ri
∂qj

δqj =
M∑
j=1

∂vi
∂q̇j

δqj

where, as before, we have from kinematics that

vi = v + ω × (ri − 1)
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The virtual work of the system is then

δW = F1 ·
M∑
j=1

∂v1

∂q̇j
δqj + · · ·+ FN ·

M∑
j=1

∂vN
∂q̇j

δqj

or, when written in terms of coefficients of δqj ,

δW =

(
N∑
i=1

F1 ·
∂vi
∂q̇1

)
δq1 + · · ·+

(
N∑
i=1

FN ·
∂vi
∂q̇N

)
δqN

Consider the trajectory of a rigid body which is specified by a single generalized
coordinate q. The virtual work is then

δW =

(
N∑
i=1

Fi ·
∂vi
∂q̇

)
δq

=

(
N∑
i=1

[
Fi ·

∂(v + ω × (ri − r))
∂q̇

])
δq

=

(
N∑
i=1

[
Fi ·

∂v

∂q̇
+ (ri − r)× Fi ·

∂ω

∂q̇

])
δq

=

([
N∑
i=1

Fi

]
· ∂v
∂q̇

+

[
N∑
i=1

(ri − r)× Fi

]
· ∂ω
∂q̇

)
δq

Using the definitions of the resultant force and torque this reduces to

δW = Qδq

where

Q =

(
F · ∂v

∂q̇
+ T · ∂ω

∂q̇

)
is the generalized force associated with the virtual displacement. If an applied force

is conservative (work is path-independent) then the corresponding generalized force can
be described from the potential function V (q) (potential energy) to be

Q = −∂V
∂q

since a conservative force is equal to the negative of the gradient of its corresponding
potential function. If the trajectory is defined by more than one generalized coordinate
we have

δW =

M∑
i=1

Qjδqj
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where

Qj = F · ∂v
∂q̇j

+ T · ∂ω
∂q̇j

For a mechanical system of B rigid bodies - assuming for the present that the dy-
namics of each rigid body are described by only one generalized coordinate q - the total
virtual work is

δW =

B∑
i=1

Fi ·
∂vi
∂q̇

+ Ti ·
∂ωi
∂q̇

= Qδq

where Q is the generalized force acting on the system. If instead the system is defined
by M generalized coordinates (the system has M degrees of freedom) then the virtual
work is given by

δW =

M∑
j=1

Qjδqj

where

Qj =
B∑
i=1

(
Fi ·

∂vi
∂q̇j

+ Ti ·
∂ωi
∂q̇j

)
is the generalized force associated with the jth generalized coordinate qj .
The principle of virtual work states that static equilibrium occurs when these gener-

alized forces acting on the system are zero, ie

Qj = 0, j = 1, . . . ,M

However, one can extend this principle to apply to a system of rigid bodies in motion
by considering the generalized inertia forces acting on the system at dynamic equilibrium.

Consider a single rigid body translating under the influence of a resultant force F
and rotating under the influence of a resultant torque T . Again, assume that this body
has dynamics described by a single generalized coordinate q. The generalized inertia
force associated with this coordinate is then

Q̂ = −(Ma) · ∂v
∂q̇
− ([IR]α+ ω × [IR]ω) · ∂ω

∂q̇

where the expressions for F and T have been used and the negative sign comes from
“moving the inertia terms over to the other side”. The kinetic energy of a rigid body is

T =
1

2
Mv · v +

1

2
ω · [IR]ω

and thus the generalized inertia force can be computed from the kinetic energy as
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Q̂ = −
(
d

dt

∂T

∂q̇
− ∂T

∂q

)
In the case of a system of B rigid bodies with M generalized coordinates the kinetic

energy is

T =
B∑
i=1

[
1

2
Mvi · vi +

1

2
ωi · [IR]ωi

]
and the M generalized inertia forces can be computed as

Q̂j = −
(
d

dt

∂T

∂q̇j
− ∂T

∂qj

)
This system of rigid bodies is said to be in dynamic equilibrium when the virtual

work of the sum of the generalized applied forces Q and the generalized inertia forces Q̂
is zero for any virtual displacement δq. Thus, for a system of B bodies described by M
generalized coordinates

δW =
M∑
j=1

(Qj + Q̂j) = 0

yields the conditions for dynamic equilibrium

Qj + Q̂j = 0, j = 1, . . . ,M

Using the definition of the generalized inertia forces given above, this can be written
as

d

dt

∂T

∂q̇j
− ∂T

∂qj
= Qj , j = 1, . . . ,M

This is thus a set of M equations which describe the dynamics of the rigid body
system. If the applied generalized forces are derivable from potential functions then the
above becomes

d

dt

∂T

∂q̇j
− ∂T

∂qj
=
∂V

∂qj
, j = 1, . . . ,M

If we define the Lagrangian to be

L = T − V

Then the above equations can be written

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0, j = 1, . . . ,M
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These are known as Lagrange’s Equations of Motion. Non-conservative generalized
forces applied to the system can be included using the form

d

dt

∂L

∂q̇j
− ∂L

∂qj
= Qj , j = 1, . . . ,M

where from before

Qj = F · ∂v
∂q̇j

+ T · ∂ω
∂q̇j

is the general expression for an applied generalized force.

6.8 Kinematics

Consider a point P whose position in a fixed Frame 0 is defined to be p0 and in a non-
fixed (translating and rotating) Frame 1 to be p1. Let R0

1 denote the rotation matrix
representing the orientation of Frame 1 with respect to Frame 0 and let o0

1 denote the
position of the origin of Frame 1 with respect to Frame 0. The expression for the point
P in Frame 0 can then be written as

p0 = o0
1 +R0

1p
1

Differentiating this expression with respect to time yields

ṗ0 = ȯ0
1 +R0

1ṗ
1 + Ṙ0

1p
1

= ȯ0
1 +R0

1ṗ
1 + S(ω0

1)R0
1p

1

= ȯ0
1 +R0

1ṗ
1 + ω0

1 × r0
1

where the definition of the derivative of a rotation matrix has been used to yield

Ṙ0
1 = S(ω0

1)R0
1.

Here the vector r0
1 = R0

1p
1 represents the point P after it has been rotated into

Frame 0 but not translated, ie r0
1 = p0 − o0

1. This is known as the velocity composition
rule.

If the point P is fixed in Frame 1 then this reduces to

ṗ0 = ȯ0
1 + ω0

1 × r0
1

In order to find the acceleration of P with respect to Frame 0 we differentiate again,
yielding

p̈0 = ö0
1 + ω̇0

1 × r0
1 + ω0

1 × ṙ0
1

= ö0
1 + α0

1 × r0
1 + ω0

1 × (R0
1ṗ

1 + Ṙ0
1p

1)
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Again, since it is assumed that p1 is fixed and using the expression for the derivative
of a rotation matrix we have

p̈0 = ö0
1 + α0

1 × r0
1 + ω0

1 × (ω0
1 × r0

1)

6.9 Rigid Body Dynamics

6.9.1 Manipulator Dynamic Model (Lagrange Formulation)

Consider a manipulator composed of N rigid links, each of which is a continuum of
particles of infinitesimal mass. The goal is to derive a dynamic model which relates
the generalized forces applied to the joints of the manipulator and their corresponding
accelerations.

The Lagrange Formulation states that such a system is governed by N ordinary
differential equations, the nth of which is given by

d

dt

(
∂L

∂q̇n

)
− ∂L

∂qn
= ξn ∀n ∈ {1, . . . , N}

where the Lagrangian of the system is given by

L = T − U

where T is the total kinetic energy of the system and U is the total potential energy
of the system.

For an N -link manipulator, the total kinetic energy is given by

T =

N∑
n=1

Tln

where Tln denotes the kinetic energy of the nth link. Note that this derivation will
neglect the effects of the motor (or other actuator). If pi denotes the position of the ith

particle belonging to the nth link then the kinetic energy of this link can be expressed
as

Tln =
1

2

∫
Vn

ṗTi ṗiρdV

where the link is assumed to be of uniform density ρ. This is thus a triple integral
over the link volume.

Consider the position vector pCn of the center of mass of the link; the position of the
ith particle can thus be expressed as

pi = pCn + ri

where ri is the vector from the center of mass to the particle. Note here that the
center of mass is computed as
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pCn =
1

mn

∫
Vn

piρdV

where mn is the total mass of the link as given by

mn =

∫
Vn

ρdV

From kinematics, the velocity of the ith particle can be expressed as

ṗi = ṗCn + ωn × ri
= ṗCn + S(ωn)ri

where S(•) denotes the skew-symmetric operator and ωn is the angular velocity of
the link with respect to the base frame. Note that the angular velocity is a free vector
and is the same for all points on the rigid body.

Using this expression for the particle velocity in the expression for the total link
kinetic energy yields

Tn =
1

2

∫
Vn

(ṗCn + S(ωn)ri)
T (ṗCn + S(ωn)ri) dV

Expanding the above expression out yields

Tn =
1

2

∫
Vn

(
ṗTCn

ṗCn + ṗTCn
S(ωn)ri + (S(ωn)ri)

T ṗCn + (S(ωn)ri)
TS(ωn)ri

)
ρdV

The kinetic energy integral can thus be split into four integrals each of which represent
a different type of kinetic energy.

Translational:

The translational contribution to the total kinetic energy

Tn =
1

2

∫
Vn

ṗTCn
ṗCnρdV

is due to the translation of the center of mass of the link. Since the location of the
link center of mass does not depend on position within the body it can be pulled outside
the integral to yield

Tn = ṗTCn
ṗCn

∫
Vn

ρdV =
1

2
mnṗ

T
Cn
ṗCn

If the body were only translating, this would be its total kinetic energy.
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Rotational:

The kinetic energy contribution due to the rotation of the rigid body is

Tn =
1

2

∫
Vn

rTi S(ωn)TS(ωn)riρdV

This contribution is due to the motion of the particle relative to the translation of
the center of mass (in a frame fixed to the COM the relative position of the particle
would not remain constant due to the body’s rotation).

Exploiting the fact that

S(ωn)ri = ωn × ri = −ri × ωn = −S(ri)ωn

and the fact that the angular velocity can be pulled outside the integral, the rotational
kinetic energy can be expressed as

Tn =
1

2
ωTn

(∫
Vn

S(ri)
TS(ri)ρdV

)
ωn

=
1

2
ωTn Īnωn

The quantity inside the parentheses is defined to be the inertia tensor relative the
center of mass of the link. That is,

Īn =

∫
Vn

S(ri)
TS(ri)ρdV

=


∫

(r2
iy + r2

iz)dV −
∫
rixriydV −

∫
rixrizdV

∗
∫

(r2
ix + r2

iz)dV −
∫
riyrizdV

∗ ∗
∫

(r2
ix + r2

iy)dV


=

Ixx −Ixy −Ixz
∗ Iyy −Iyz
∗ ∗ Izz


where elements have been omitted for notational simplicity since the inertia matrix

is symmetric (also positive-definite).
Body-Frame Inertia Matrix:
One complication with this quantity is that it is configuration-dependent since the

vector ri of the position of the ith particle relative the the center of mass of the link is a
function of the link orientation. We therefore seek to write Īn as a function of a constant
body-frame inertia matrix Īnn and the link orientation Rn (which is defined w/r/t the
base frame).

The angular velocity of the link with respect to the base as expressed in the base
frame is ω0

0,n = ωn. This angular velocity can instead be expressed in the link frame as
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ωnn = RTi ωn

We can thus write

S(ωn)ri = ωn × ri = Rωnn ×Rrni = R(−rni × ωnn) = −RS(rni )ωnn

where rni denotes the position of the particle relative to the link center of mass in
the body frame. Since the body is rigid, this vector is constant!

The expression for the link kinetic energy can then be written as

Tn =
1

2

∫
Vn

ωnn
TS(rni )TRTRS(rni )ωnnρdV

=
1

2
ωnn

T

(∫
Vn

S(rni )TS(rni )ρdV

)
ωnn

=
1

2
ωnn

T Īnnω
n
n

=
1

2
ωTnRnĪ

n
nR

T
nωn

We thus have the relation

Īn = RnĪ
n
nR

T
n

where the body-frame inertia matrix is defined as

Īnn =

∫
Vn

S(rni )TS(rni )ρdV

Since rni is a constant vector, the resulting matrix is constant. Note also that for pla-
nar problems (such as the two-link planar arm, for example) the angular velocity vector
is orthogonal to the plane and thus the inertia matrices are the same (and constant).

Mutual:

The final contribution to the total kinetic energy of the link comes from a so-called
mutual term which involves both translation of the COM and rotation relative to the
COM. It is

Tn =
1

2

∫
Vn

(
ṗTCn

S(ωn)ri + (S(ωn)ri)
T ṗCn

)
ρdV = 2

(
1

2

∫
Vn

ṗTCn
S(ωn)riρdV

)
Note that the velocity of the center of mass and the angular velocity of the link can

be pulled out of the integral to yield
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Tn = ṗTCn
S(ωn)

∫
Vn

riρdV

= ṗTCn
S(ωn)

∫
Vn

riρdV

= ṗTCn
S(ωn)

∫
Vn

(pi − pCn)ρdV

= 0

since

∫
Vn

piρdV −
∫
Vn

pCnρdV = mn

(
1

mn

∫
Vn

piρdV

)
− pCn

∫
Vn

ρdV

= mnpCn −mnpCn

= 0

Thus, by choosing the center of mass as the reference point with respect to which the
velocities of the individual particles are defined, the contribution of this mutual term to
the total kinetic energy disappears!

The total kinetic energy of the link is thus

Tn =
1

2
mnṗ

T
Cn
ṗCn +

1

2
ωTnRiĪ

n
nR

T
i ωn

In order to derive the equations governing the dynamics of the manipulator, we must
express the above kinetic energy in terms of the generalized coordinates (joint variables)
in order to take the required partial derivatives for Lagrange’s formulation.

Using the geometry of the manipulator we can compute the matrix J (ln)(q) which is
the configuration-dependent Jacobian relating the velocity of the center of mass of the
nth link to the joint variables. Recall that the Jacobian has the structure

J (ln) =

J (ln)
P

J
(ln)
O


where

ṗCn = J
(ln)
P1

q̇1 + J
(ln)
P2

q̇2 + · · ·+ J
(ln)
Pn

q̇n

ωn = J
(ln)
O1

q̇1 + J
(ln)
O2

q̇2 + · · ·+ J
(ln)
On

q̇n



CHAPTER 6. ROBOTICS 176

6.9.2 Parallel Axis Theorem (Steiner’s Theorem)

Consider a rigid body B whose inertia tensor (matrix) about its center of mass pC is
known; this is given to be

Ī =

Consider a rigid body B which is composed of N particles Pi each of mass mi; let
a Frame 1 be fixed to the body and a Frame 0 be fixed in the world. Let ri denote the
position of the particle in the world frame. Newton’s second law applied to any such
particle in the body yields

Fi +

N∑
j=1

Fij = miai

where Fi is the force applied to the particle and Fij is the internal force which particle
Pj exerts on the particle Pi.

In order to simplify the analysis of the motion of the body, we can instead consider
the resultant force and resultant torque which produce the same overall translational
and rotational motion of the body as the system of particles. These are given by

F =
N∑
i=1

Fi

T =

N∑
i=1

(ri − r)× Fi

with respect to a reference point R where the Frame 1 is fixed. Note here that the
resultant force F is the sum of all forces acting on the particles - internal and external.
Since each of these internal forces has Fij = −Fji by Newton’s third law, they vanish
from the above expression and the resultant is thus the sum of the external forces only.

We are free to choose any point R with respect to which the resultant torque is de-
fined; however, consideration of these equations will lead to a natural choice of reference.

Newton’s seconds law for a particle yields

Fi = miai −
N∑
i=1

Fij

and thus the resultant force acting on the body is

F =

N∑
i=1

(
miai −

N∑
i=1

Fij

)
Again, since internal forces cancel, we have
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F =

N∑
i=1

miai

The expression for the acceleration ai of a point Pi as expressed in the world-fixed
Frame 0 is, from kinematics,

ai = r̈ + α× (ri − r) + ω × (ω × (ri − r))

where r̈ denotes the linear acceleration of the origin of the body-fixed reference
frame (point R), ω denotes the angular velocity of the body-fixed frame and α denotes
the angular acceleration of the body-fixed frame - all with respect to the world frame.

The resultant force is then

F =
∑
i

miai

=
∑
i

mi [̈r + α× (ri − r) + ω × (ω × (ri − r))]

=r̈
∑
i

mi + α×
∑
i

mi(ri − r) + ω × (ω ×
∑
i

mi(ri − r))

where the sum has been moved in all three terms since r̈, ω and α are describe the
motion of the body as a whole and not of individual particles. Clearly, by choosing R
such that ∑

i

mi(ri − r) = 0

the second and third terms will vanish and we can thus reduce the above expression
to

F = r̈
∑
i

mi = M r̈

where M =
∑

imi is the total mass of the body. This choice of R yields

r =
1

M

∑
i

miri

which is known as the center of mass. Using this expression, the resultant torque
becomes
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T =
∑
i

[(ri − r)× (miai)]

=
∑
i

mi(ri − r)× (r̈ + α× (ri − r) + ω × (ω × (ri − r)))

=

[∑
i

mi(ri − r)× r̈

]
+

[∑
i

mi(ri − r)× (α× (ri − r))

]
+

[∑
i

mi(ri − r)× (ω × (ω × (ri − r)))

]

Swapping around cross products (noting that the cross product does NOT associate)
yields

T = [IR]α+ ω × [IR]ω

where the inertia matrix of the body relative to the reference R (here the center of
mass) is

[IR] = −
N∑
i=1

mi[ri − r][ri − r]

where brackets here indicate a skew-symmetric matrix.

6.10 Feedback Linearization (Inverse Dynamics Control):

Consider the following second-order, nonlinear system governing the dynamics of a ma-
nipulator.

B(q)q̈ + C(q, q̇) + g(q) = τ

We can rewrite the above system as

B(q)q̈ + n(q, q̇) = τ

where n(q, q̇) = C(q, q̇)q̇ + g(q) for convenience. We wish to choose an input τ
such that the system becomes linearized. Assuming we know the model exactly, we can
accomplish this by cancellation of the nonlinear dynamics. Choosing

τ = B(q)y + n(q, q̇)

results in the second-order system

q̈ = y
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where y is the input to this linear, decoupled system. The above choice of τ is denoted
inverse dynamics control since it requires the computation of the manipulator’s inverse
dynamics (the mapping from joint varibles to torques).

Now, assume we wish for the manipulator to follow a desired trajectory specified by
[q̈d, q̇d, qd]. The simple choice of y = q̈d would lead to the system

q̈ = q̈d

Since the actual trajectory and desired trajectory are related directly via (double)
integration, the manipulator would precisely track the desired trajectory if and only if
the initial position and velocity match those of the desired trajectory. This can be seen
by defining the tracking error e = q − qd and rewriting the above system as

q̈ − q̈d = ë = 0

Even though the second derivative of the error is zero, the tracking error may still be
constant (due to mismatched initial positions) or growing linearly (due to mismatched
initial velocities)!

What choice of input y, then, guarantees convergence of the tracking error to zero?
it’s clear that choosing

y = q̈d −Kd(q̇ − q̇d)−Kp(q − qd)

leads to the system

(q̈ − q̈d) +Kd(q̇ − q̇d) +Kp(q − qd) = 0

or in terms of the tracking error,

ë+Kdė+Kpe = 0

If the initial position and velocity match those of the desired trajectory, then the
system will follow this trajectory with no error. If they do not match, though, the error
will decay to zero according to the gain matrices Kp and Kp which are chosen to ensure
stable error dynamics. Thus, for the original system, the input choice

τ = B(q)y + n(q, q̇)

y = q̈d −Kd(q̇ − q̇d)−Kp(q − qd)

ensures accurate tracking. The first equation has the effect of linearizing the system
and decoupling the input/output relationship of the joint variables. The second equation
ensures stability of the system and of the tracking error dynamics. The issues with
inverse dynamics control is that 1) the dynamic model may not be accurately known
and 2) computation of the inverse dynamics online (in a control loop running at 1kHz,
for example) is demanding and may require approximations to “lighten the load.”
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6.10.1 Humanoid Robot Control

Inverse dynamics control for humanoid robots (legged robots having so-called floating
base dynamics in general) is significantly more complicated. For a summary of methods
for humanoid robot control, please refer to the Background chapter of my PhD thesis4.

4http://www-clmc.usc.edu/~nrotella/publications/NickRotellaThesis.pdf

http://www-clmc.usc.edu/~nrotella/publications/NickRotellaThesis.pdf


Chapter 7

Signals and Filtering

7.1 Probability

The relative frequency definition of probability says that the probability of an event A
is

p(A) =
NumberoftimesAoccurs

Totalnumberofoutcomes

The total number of ways to select k objects from n objects (assuming order doesn’t
matter) is n-choose-k or n

k

 =
n!

(n− k)!k!

The conditional probability of event A given event B, that is, the probability that
event A occurs given that event B has occurred, is

P (A|B) =
P (A,B)

P (B)

where P (A,B) is the joint probability of A and B, that is the probability that both
events A and B occur. Since

P (A,B) = P (A|B)P (B)

this implies that the probability of A occuring has some dependence on whether or
not B has occurred. If the occurrence of B has no effect on the occurrence of A then

P (A,B) = P (A)P (B)

because P (A) no longer depends on B, is the two events are independent.
Since we can also write P (A,B) = P (B|A)P (A) we can write

181
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P (A|B) =
P (B|A)P (A)

P (B)

which is Bayes’ Rule.
A random variable is defined to be a functional mapping between a set of experi-

mental outcomes (the domain) to a set of real numbers (the range).
For example, a random variable X is defined to be the RV which represents the roll of

a die. The probability that X is 4 is a realization of the RV. The RV exists independently
of any of its realizations and must not be confused with them.

The most fundamental property of an RV X is its probability distribution function
(PDF)

FX(x) = P (X ≤ x)

where x is a nonrandom independent variable or constant. The PDF has the following
properties:

FX(x) ∈ [0, 1]

FX(−∞) = 0

FX(∞) = 1

FX(a) ≤ FX(b) if a ≤ b
P (a < X < b) = FX(b)− FX(a)

The probability density function (pdf) of X is defined to be

fX(x) =
dFX(x)

dx

That is, the pdf is the derivative of the PDF with respect to x. It has the following
properties:

FX(x)

∫ x

−∞
fX(z)dz

fX(x) ≥ 0∫ ∞
−∞

fX(x)dx = 1

P (a < X < b) =

∫ b

a
fX(x)dx

The pdf is thus the density of the probability of X with respect to x; summing
(integrating) this function adds up the probabilities associated with x. Note that when
the RV X represents an experiment with discrete outcomes then the integrals become
sums and the pdf is often called the probability mass function (pmf).
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The Q-function of an RV is defined to be one minus the PDF, ie

Q(x) = 1− FX(x) = P (X > x)

In other words, Q(x) is the probability that x does not occur (since the sum or
integral of the PDF must be unity).

The conditional distribution and density of X given that an event A occurred are
given by

FX(x|A) = P (X ≤ x|A) =
P (X ≤ x,A)

P (A)

fX(x|A) =
dFX(x|A)

dx

In addition, Bayes’ Rule generalizes to these conditional densities.
Now, consider the random variables X1 and X2; the conditional pdf of the RV X1

given that RV X2 is equal to the realization x2 is defined as

fX1|X2
(x1|x2) = P [(X1 ≤ x1)|(X2 = x2)]

=
fX1,X2(x1, x2)

fX2(x2)

Also consider the following product of two conditional pdf’s; the result can be ex-
tended to any number of RVs.

f [x1|(x2, x3, x4)]f [(x2, x3)|x4] =
f(x1, x2, x3, x4)

f(x2, x3, x4)

f(x2, x3, x4)

f(x4)

=
f(x1, x2, x3, x4)

f(x4)

= f [(x1, x2, x3)|x4]

The expected value of a RV X is defined to be its average value over a large number
of experiments - this is called the expectation of the RV. Consider a function g(X) of the
RV X; this function is also a random variable. The expected value of of the function is
then

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx

where fX(x) is the pdf of X. If the function is g(X) = X then the expected value of
X is

x̄ = E[X] =

∫ ∞
−∞

xfX(x)dx
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This is essentially the sum (integral) of all possible outcomes of the experiment
(realizations of the RV X) weighted by their probability densities; the expectation is a
weighted average.

The variance of an RV is a measure of how much we expect the RV to vary from its
expected value; it is defined as

σ2
X = E[(X − x̄)2] =

∫ ∞
−∞

(x− x̄)2fX(x)dx

The square root of the variance is the standard deviation of the RV. Note that the
variance can also be written as

σ2 = E[X2 − 2Xx̄+ x̄2]

= E[X2]− 2x̄E[X] + x̄2

= E[X2]− 2x̄2 + x̄2

= e[X2]− x̄2

where it has been used that the expected value x̄ can be pulled outside expectations
since it itself is an expected value (it is known with certainty).

In general, the ith moment and central moment of X are defined to be

ithmomentofX = E[Xi]

ithcentralmomentofX = E[(X − x̄)i]

An RV is called uniform if its pdf is a constant value between the limits a and
b; within these limits the RV has an equally likely probability of attaining any value
between a and b but a zero probability of obtaining a value outside these limits. Thus,

fX(x)

{
1
b−a x ∈ [a, b]

0 otherwise

An RV is called Gaussian (normal) if its pdf is given by

fX(x) =
1

σ
√

2π
exp

[
−(x− x̄)2

2σ2

]
where x̄ and σ are the mean and standard deviation of the RV, respectively. This is

known as a Gaussian (normal) RV and is denoted by

X ∼ N(x̄, σ2)
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7.2 Stochastic Processes

A signal or process is said to be stationary or strictly stationary if its joint probability
distribution does not change when the signal is shifted in time. Thus, the mean and
variance of the process do not change over time. White noise, for example, is strict-sense
stationary since its mean is always zero and its autocorrelation is zero for all time lags
other than zero where it is σ2.

A slightly weaker form of stationarity is wide-sense stationarity. In this case, the
mean of the process is constant in time but the autocorrelation is a function only of the
time lag.

The autocorrelation of a discrete-time signal is given by

Rxx[k] = E(x[n]x[n− k])

where it is assumed that the signal is WSS. It follows from the above definitions that
the autocorrelation of a white noise process is

Rxx[k] = σ2δ[k]

The Power Spectral Density (PSD) function is defined as the Fourier transform of
the autocorrelation function; in the discrete domain, this is

Sxx(ω) =
∞∑

k=−∞
Rxx[k]e−jωk

This function gives the power (squared signal amplitude) per unit frequency. It
follows that the integral of the PSD is the expected power if the signal. For white noise,
we have

Sxx(ω) =

∞∑
k=−∞

σ2δ[k]e−jωk = σ2

ie its PSD is constant (flat across all frequencies). It follows that white noise contains,
in theory, infinite power. In real systems, noise is not white at all frequencies and thus
its power is finite.

7.3 Signals

MdB = −10log10(
Pout
Pin

) = −20log10(
Vout
Vin

)

The cutoff frequency of a filter is defined to be the frequency at which the input
signal is attenuated to half power, ie Pout = 0.5Pin. The gain at this point is then

MdB = −10log10(
1

2
) ≈ −3dB
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The cutoff frequency is therefore known as the 3dB-down point (also the corner or
break frequency).

The bandwidth of a filter is usually defined to be the difference between the upper and
lower cutoff frequencies for a bandpass filter or the cutoff frequency itself for a low-pass
filter.

7.3.1 Moving Average Filter

The output of an M-tap FIR moving average filter is simply the average of the current
sample and the previous M − 1 samples

y[n] =
1

M

M−1∑
k=0

x[n− k]

The transfer function of this filter is described by the Fourier transform of the rect-
angualr pulse, ie

H(f) =
sin (Mπf)

M sin (πf)

where here f is the digital frequency of the signal defined to be

fdig =
f

fs

7.3.2 Aliasing

Since digitial frequency is periodic, a sampled signal shows up or aliases in the frequency
domain (spectrum) at integer multiples of the sampling frequency. If the bandlimit of
the signal is B then the Nyquist-Shannon sampling theorem says that one should choose
the sampling rate to be

fs > 2f

in order to prevent aliasing. This is often called the Nyquist frequency.
If the sampling rate is fixed then the signal is often low-pass filtered to eliminate any

frequency components above the Nyquist frequency prior to A/D conversion.

7.4 Recursive Parameter Estimation

The sample mean x̄ and sample covariance Pk of a Gaussian random vector x at time k
are defined to be
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x̄k =
1

k

k∑
i=1

xi

Pk =
1

k

k∑
i=1

(xi − x̄i)(xi − x̄i)T

respectively. If these parameters are to be computed at each time, then it is useful
to formulate their computations recursively in order to minimize computations.

To this end, we write the mean at time k in terms of the mean at time k − 1 by
factoring out the leading term from the sum as follows.

x̄k =
1

k

k∑
i=1

xi

=
1

k
xk +

k − 1

k

[
1

k − 1

k−1∑
i=1

xi

]

=
1

k
xk +

k − 1

k
x̄k−1

The same can be done for the covariance, as shown below.

Pk =
1

k

k∑
i=1

(xi − x̄i)(xi − x̄i)T

=
1

k
(xk − x̄k)(xk − x̄k)T +

k − 1

k

[
1

k − 1

k−1∑
i=1

(xi − x̄i)(xi − x̄i)T
]

=
1

k
(xk − x̄k)(xk − x̄k)T +

k − 1

k
Pk−1

In this way, the sample mean and covariance can be updated online as new samples
come in.

7.5 Kalman Filtering

Discrete-Time Model

Consider the following discrete time model in state-space form.
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xk+1 = Fkxk +Gkwk

zk = yk + vk = Hkxk + vk

where wk denotes process noise and vk denotes measurement noise. The goal is to
solve the “filtering” problem; that is, to produce an estimate at time k of the state xk
given measurements z0, z1, . . . , zk leading up to time k.

Noise assumptions

We assume that the processes {wk} and {vk} are

• individually white, meaning that for any k 6= l, vk and vl are independent of one
another and wk and wl are independent of one another.

• individually zero mean, gaussian processes with known covariances Qk and Rk,
respectively.

• independent processes.

In summary, it is assumed that the processes {wk} and {vk} are zero mean, inde-
pendent gaussian processes with covariances denoted by Qk and Rk, respectively.

Initial state assumptions

The initial state of the system x0 is assumed to be a gaussian random variable with
known mean and covariance given by

E[x0] = x̄0

E{[x0 − x̄0][x0 − x̄0]T } = P0

It is also assumed that x0 is independent of wk and vk for all k.

Propagation of Means and Covariances:

The solution to the difference equation given above is

xk = Φk,0x0 +

k−1∑
l=0

Φk,l+1Glwl

where

Φk,l = FkFk−1 · · ·Fl (k > l)
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is the state-transition matrix which, in the (homogeneous) case of no input (noise),
transfers the state from xl to xk. Note that Φk,l = Φk,mΦm,l and Φk,k = I.

Since x0, w0, w1, . . . , wk−1 are jointly gaussian random vectors, it follows that xk -
which is a linear combination of these vectors - is also gaussian. This is due to the fact
that linear transformations of gaussian random variables are gaussian. In addition, note
that {xk} is a Markov process.

Taking the expected value of both sides of the solution to the original difference
equation yields

E[xk] = Φk,0x̄0

and therefore, from the definition of the state-transition matrix,

E[xk+1] = FkE[xk]

Additionally, from the measurement model, we have

E[zk] = HkE[xk]

The covariance of xk for k ≥ l is

Pk,l = E
{

[xk − x̄k][xl − x̄l]T
}

= E


[(

Φk,0x0 +

k−1∑
m=0

Φk,m+1Gmwm

)
− Φk,0x̄0

][(
Φl,0x0 +

l−1∑
n=0

Φl,n+1Gnwn

)
− Φl,0x̄0

]T
= E


[

Φk,0(x0 − x̄0) +

k−1∑
m=0

Φk,m+1Gmwm

][
Φl,0(x0 − x̄0) +

l−1∑
n=0

Φl,n+1Gnwn

]T
Now, since x0−x̄0, w0, . . . , wk−1 are all independent, the cross terms of the expression

inside the expectation disappear, leaving

Pk,l = Φk,0E{[x0 − x̄0][x0 − x̄0]T }ΦT
l,0 +

l−1∑
m=0

Φk,m+1GmE[wmw
T
m]GTmΦT

l,m+1

The second term in the above expression is the result of the whiteness of {wk}; in the
product of the two sums in the original expression, only those terms for which m = n
have nonzero expectations.

Substituting the definitions for P0 and Qm into the preceding expression and using
properties of the state transition matrix yields

Pk,l = Φk,l

{
Φl,0P0ΦT

l,0 +
l−1∑
m=0

Φl,m+1GmQmG
T
mΦT

l,m+1

}
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This is the general expression for the covariance of the state at different times. When
k = l this simplifies to

Pk = Pk,k = Φk,0P0ΦT
k,0 +

k−1∑
m=0

Φk,m+1GmQmG
T
mΦT

k,m+1

which implies that

Pk,l = Φk,lPl, k ≥ l

Note also that Pk,l = P Tl,k and thus

Pk,l = Pk,kΦ
T
l,k, k ≤ l

We now seek to derive a recursive equation for Pk = Pk,k. Using the definition of the
state-transition matrix, we can write the above as

Pk = Fk−1

[
Φk−1,0P0ΦT

k,0

]
F Tk−1+

[
k−2∑
m=0

Φk−1,m+1GmQmG
T
mΦT

k−1,m+1

]
+Φk,kGkQkG

T
k ΦT

k,k

where we have factored out the final term from the sum. Again using the definition
of Φ and the property that Φk,k = I we have

Pk = Fk−1

[
Φk−1,0P0ΦT

k,0 +
k−2∑
m=0

Φk−2,m+1GmQmG
T
mΦT

k−2,m+1

]
F Tk−1 +GkQkG

T
k

The expression inside the parentheses is the definition of Pk−1, leading to the differ-
ence equation

Pk = Fk−1Pk−1F
T
k−1 +GkQkG

T
k

which recursively describes the time evolution of the covariance of the state.
The covariance of the measurement is computed similarly as follows.

Sk,l = E
{

[zk − z̄k][zl − z̄l]T
}

= E
{

[(Hkxk + vk)−Hkx̄k][(Hlxl + vl)−Hlx̄l]
T
}

= E
{

[(Hk(xk − x̄k) + vk][Hl(xl − x̄l) + vl]
T
}

Note that {vk} is independent of {xk − x̄k} because the latter process is determined
entirely by X0 and {wk}, both of which were assumed to be independent of {vk}. Thus
the cross terms in the above expression disappear. This yields
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Sk,l = HkE
{

[xk − x̄k][xl − x̄l]T
}
HT
l + E[vkv

T
l ]

and thus

Sk,l = HkPk,lH
T
l +Rkδkl

In addition, we can compute the covariance between xk and zk as

cov(xk, zk) = E{[xk − x̄k][zk − z̄k]T }
= E{[xk − x̄k][Hk(xk − x̄k)]T }
= E{[xk − x̄k][(xk − x̄k)]T }HT

k

= PkH
T
k

Likewise, we find that

cov(zk, xk) = HkPk

Probabilistic Properties

We have already stated that xk is gaussian since it is a linear combination of x0 and
w0, . . . , wk−1 (all of which are gaussian); we also know that zk is gaussian since xk and
vk are gaussian.

Our goal in filtering, however, is to produce an estimate of xk by conditioning on zk.
That is, we seek to use the information provided by process {zk} to estimate the state.
What form does xk conditioned on zk have?

Let the pair of vectors X and Y be jointly gaussian, ie the vector composed as
Z = [XTY T ]T is gauassian with mean and covariance

z̄ =

(
x̄
ȳ

)
Σ =

(
Σxx Σxy

Σyx Σyy

)
It can be shown that X conditioned on Y is also gaussian with conditional mean and

conditional covariance given by

x̃ = x̄+ ΣxyΣ
−1
yy (y − ȳ)

Σ̃ = Σxx − ΣxyΣ
−1
yy Σyx

These parameters describe the distribution p(x|y) which, of course, is a function;
given a value of y, x is regarded as a variable. Since we seek to estimate x from y, we
might logically wish to determine the value of x which maximizes this probability given
Y = y. This is the maximum a posteriori (MAP) estimate of x. This is not the only
(nor necessarily the best) way to choose x, however!
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Minimum Variance Estimate

Instead of seeking the estimate of x which maximizes the conditional probability density
given above, we wish to find the estimate x̂ which is closest to the true value of x on
average. That is, we seek the minimum variance estimate x̂ for which

E{||X − x̂||2|Y = y} ≤ E{||X − z||2|Y = y}
for all other vectors z which are determined in a different way from y than was x

(but are not dependent on x). For any such z we can write

E{||X − z||2|Y = y} =

∫ ∞
−∞

(x− z)T (x− z)p(x|y)dx

=

∫ ∞
−∞

xTxp(x|y)dx− 2zT
∫ ∞
−∞

xp(x|y)dx+ zT z

∫ ∞
−∞

p(x|y)dx

=

[
zT −

∫ ∞
−∞

xT p(x|y)dx

] [
z −

∫ ∞
−∞

xp(x|y)dx

]
+ · · ·

+

∫ ∞
−∞

xTxp(x|y)dx+

∣∣∣∣∣∣∣∣∫ ∞
−∞

xp(x|y)dx

∣∣∣∣∣∣∣∣2
Clearly, the above expression is minimized when the first term disappears; this follows

from the choice

z =

∫ ∞
−∞

xp(x|y)dx

Hence, the minimum variance estimate of x is the conditional mean estimate

x̂ = E{X|Y = y}
With this choice, the variance becomes

E{||X − z||2|Y = y} =

∫ ∞
−∞

xTxp(x|y)dx+

∣∣∣∣∣∣∣∣∫ ∞
−∞

xp(x|y)dx

∣∣∣∣∣∣∣∣2
= E{||X||2|Y = y} − ||x̂||2

The variance is also given by the trace of the corresponding error covariance matrix
which, since the estimate is simply the conditional mean, is the covariance matrix

Σ̂ = Σxx − ΣxxΣ−1
yy Σyx

associated with the conditional density.
Note that an estimate is termed unbiased when the expected value of the the esti-

mation error e = x− x̂ given y is zero. Since the minimum variance estimate is equal to
the conditional mean, this estimate must be unbiased.

E{X − x̂|Y = y} = E{X|Y = y} − x̂ = 0
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Derivation of the Kalman Filter

The first-principles derivation of the Kalman Filter follows directly from the results of
previous sections. We seek to form an estimate x̂k of the state of the system at time k
from the measurements z0, . . . , zk. We begin with the initial state and use the results of
preceding sections to develop general formulas.

The initial state x0 is assumed to have known mean x̄0 = x̂−0 and covariance P−0 . As
noted previously, xk and zk are jointly gaussian for all k with mean and covariance

mean =

(
x̄k
Hkx̄k

)
cov =

(
Pk PkH

T
k

HkPk HkPkH
T
k +Rk

)
Therefore for k = 0, x0 conditioned on z0 is also gaussian with mean

x̂+
0 = x̂−0 + P0H

T
0

(
H0P

−
0 H

T
0 +R0

)−1
(z0 −H0x̂

−
0 )

and covariance

P+
0 = P−0 − P

−
0 H

T
0

(
H0P

−
0 H

T
0 +R0

)−1
H0P

−
0

Based on how how the mean and covariance of the state propagate through the
system, it follows that x1 conditioned on z0 is gaussian with mean and covariance

x̂−1 = F0x̂
+
0 and P−1 = F0P

+
0 F

T
0 +G0Q0G

T
0

Now, the random variable [xT1 z
T
1 ] conditioned on z0 is gaussian with mean and co-

variance

(
x̂−1
H1x̂

−
1

)
and

(
P−1 P−1 H

T
1

H1P
−
1 H1P

−
1 H

T
1 +R1

)
It follows that x1 conditioned on z0, z1 then has mean

x̂+
1 = x̂−1 + P1H

T
1

(
H1P

−
1 H

T
1 +R1

)−1
(z1 −H1x̂

−
1 )

and covariance

P+
1 = P−1 − P

−
1 H

T
1

(
H1P

−
1 H

T
1 +R1

)−1
H1P

−
1

In general, then, we can write in the same way that

x̂−k = Fk−1x̂
+
k−1

P−k = Fk−1P
+
k−1F

T
k−1 +Gk−1Qk−1G

T
k−1

Kk = PkH
T
k

(
HkP

−
k H

T
k +Rk

)−1

x̂+
k = x̂−k +Kk(zk −Hkx̂

−
k )

P+
k = P−k −KkHkP

−
k
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Kalman Filtering

Consider the time-invariant state-space system

ẋ = Ax+ Lw

z = Hx+ v

where w is the process noise vector and v is the measurement noise vector. Each is
assumed to be white and Gaussian with zero mean and the continuous process covariance
matrices Qc and Rc, respectively.

Since the matrices A and L do not depend on time, the solution to this system can
be written as

x(tk) = eA(tk−tk−1)x(tk−1) +

∫ tk

tk−1

eA(tk−τ)Lw(τ)dτ

where Φ(tk, tk−1) = eA(tk−tk−1) is the state-transition matrix governing the system’s
unforced response between these times. Defining a timestep ∆t = tk−tk−1 and assuming
a zero-order hold such that the noise vector does not change over this timestep, we can
write the solution as

xk = Fk−1xk−1 + Lk−1wk−1

where

Fk = eA∆t

Lk =

∫ tk+1

tk

eA(tk+1−τ)dτL

These equations specify how to discretize the dynamics of a continuous system and are
found in many texts.

The expected value of the state vector at time k is then

x̄ = E[xk] = Fk−1x̄k−1

since E[wk] = 0 for all k because the process noise is zero-mean.
Defining the estimation error at time k to be ek = xk−x̄k, we find that the covariance

of the state prediction at time k as a function of the covariance at time k − 1 is
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Pk = E[eke
T
k ]

= E[(xk − x̄k)(xk − x̄k)T ]

...

= Fk−1Pk−1F
T
k−1 +Qk−1

where

Qk−1 =

∫ tk

tk−1

eA(tk−τ)LQcL
T eA

T (tk−τ)dτ

is the discrete process noise covariance matrix. In practice, the discrete dynamics
matrix and state covariance matrix are often truncated at first order to yield

Fk−1 ≈ I +A∆t

Qk−1 ≈ Qc∆t

Additionally, the continuous measurement covariance matrix can be discretized as

Rk−1 ≈
Rc
∆t

A standard Kalman Filter implementation maintains its estimate of the state vector
as the expected value of the state given all prior measurements. This is done by 1)
propagating the expected value of the state and estimation error covariance using the
linear dynamics (prediction step) and 2) updating the expected value of the state and
estimation error covariance using a measurement related to the state (update step).

The expected value of x will henceforth be denoted by x̂; note that x̂−k denotes the
EKF estimate of x at time k prior to the update step (a priori estimate) while x̂+

k

denotes the estimate after the update step (a posteriori estimate). Written another
way, this means

x̂−k = E[xk|z1, z2, · · · , zk−1]

x̂+
k = E[xk|z1, z2, · · · , zk]

Likewise, P−k denotes the estimation error covariance prior to the update step and
P+
k denotes the same quantity after the measurement at time k is taken; that is,

P̂−k = E[(xk − x̂−k )(xk − x̂−k )T ]

P̂+
k = E[(xk − x̂+

k )(xk − x̂+
k )T ]
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Thus, the Kalman filter steps and corresponding equations are

Predict:

x̂−k = E[xk] = Fkx̂k−1

ẑk = Hkx̂
−
k

P−k = E[(xk − x̂−k )(xk − x̂−k )T ] = FkP
+
k−1F

T
k +Qk

Update:

yk = zk − ẑk
Sk = E[yky

T
k ] = HkP

−
k H

T
k +Rk

Kk = P−k H
T
k S
−1
k

x̂+
k = x̂−k +Kkyk

P+
k = (I −KkHk)P

−
k

Here the quantity yk = (zk − ẑk) is called the innovations because it is the part of
the measurement zk which contains new information which can be used to update the
state. The covariance of the innovations is given by Sk.

The “size” of Kk (with reference to the scalar case) determines to what extent the
measurement at time k is used to correct the prediction. A “larger” state covariance
means that the prediction is uncertain, making the Kalman gain larger and thus weigh-
ing the effect of the measurement more. A “larger” innovations covariance means the
measurement is uncertain, making the gain smaller and thus trusting the prediction
more.

Discrete Extended Kalman Filter

The issue is that the Kalman Filter as described above can only be implemented for
linear systems. A simple way to get around this limitation is to linearize a nonlinear
system around the Kalman estimate at each timestep and then use the linearized system
matrices to perform the update.

Consider the discrete-time nonlinear system (assuming no control input for simplic-
ity)

xk = f(xk−1, wk)

zk = h(xk, vk)

where f(•) and h(•) are nonlinear functions of the model parameters. The EKF
steps are as follows.
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Predict state and measurement:

x̂−k = f(x̂+
k−1, uk−1) : a priori state estimate

ẑk = h(x̂−k ) : Predicted measurement

Linearize and predict covariance:

Fk =
∂f

∂x
|x̂−k : Linearized dynamics matrix

Hk =
∂h

∂x
|x̂−k : Linearized measurement matrix

P−k = FkP
+
k−1F

T
k +Qk : a priori state covariance

Update predictions using measurement:

yk = zk − ẑk : Innovations vector

Sk = HkP
−
k H

T
k +Rk : Innovations covariance

Kk = P−k H
T
k S
−1
k : Kalman gain

x̂+
k = x̂−k +Kkyk : a posteriori state estimate

P+
k = (I −KkHk)P

−
k : a posteriori state covariance

Prediction entails propagating the state and its covariance as well as computing the
expected measurement. However, prediction of the covariance requires dynamics which
are linearized around the current state estimate, so things get a bit out of order. First
the state (and measurement) are predicted using the nonlinear dynamics, then lineariza-
tion of is performed first because the matrix Fk is needed in order to propagate the state
covariance. The a priori covariance is then predicted. Finally, the update step entails
obtaining the measurement and using it (along with the linearized dynamics) to update
the state and covariance to their a posteriori values at time k.

Consider the time-invariant state-space system

ẋ = Ax+Bu+ Lw

where w is the process noise vector having zero mean and the continuous process
noise covariance matrix Qc.

Since the matrices A, B and L do not depend on time, the solution to this system
can be written as

x(tk) = eA(tk−tk−1)x(tk−1) +

∫ tk

tk−1

eA(tk−τ) [Bu(τ) + Lw(τ)] dτ

where Φ(tk−1, tk) = eA(tk−tk−1) is the state-transition matrix governing the system’s
unforced response between these times. Defining a timestep ∆t = tk−tk−1 and assuming
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a zero-order hold such that the input and noise vectors (since the matrices are time-
invariant) do not change over this timestep, we can write the solution as

xk = Fk−1xk−1 +Gk−1uk−1 + Lk−1wk−1

where

Fk = eA∆t

Gk =

∫ tk+1

tk

eA(tk+1−τ)dτB

Lk =

∫ tk+1

tk

eA(tk+1−τ)dτL

The expected value of the state vector at time k is then

x̄ = E[xk] = Fk−1x̄k−1 +Gk−1uk−1

since the control input is assumed to be known and since E[wk] = 0 for all k.
Defining the estimation error at time k to be ek = xk−x̄k, we find that the covariance

of the estimation error at time k as a function of the covariance at time k − 1 is

Pk = E[eke
T
k ]

= E[(xk − x̄k)(xk − x̄k)T ]

...

= Fk−1Pk−1F
T
k−1 +Qk−1

where

Qk−1 =

∫ tk

tk−1

eA(tk−τ)LQcL
T eA(tk−τ)T )dτ

is the discrete process noise covariance matrix.
A standard discrete-time Kalman Filter implementation maintains its estimate of

the state vector as the expected value of the state. This is done by 1) propagating the
expected value of the state using the linear dynamics (predicition step) and 2) updating
the expected value of the state using a measurement related to the state (update step).
The expected value of x will henceforth be denoted by x̂; note that x̂−k denotes the EKF
estimate of x at time k prior to the update step (a priori estimate) while x̂+

k denotes
the estimate after the update step (a posteriori estimate).

Thus,
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Predict:

x̂−k = Fkx̂k−1 +Gk−1uk−1

P−k = FkP
+
k−1F

T
k +Qk

Update:

yk = zk −Hkx̂
−
k

Sk = HkP
−
k H

T
k +Rk

Kk = P−k H
T
k S
−1
k

x̂+
k = x̂−k +Kkyk

P+
k = (I −KkHk)P

−
k

7.5.1 Discrete Extended Kalman Filter

The Kalman Filter as described above can only be implemented for linear systems. How-
ever, a simple way to get around this limitation is to linearize a nonlinear system around
the Kalman estimate at each timestep and then use the same equations to perform the
update.

Consider the discrete-time nonlinear system

xk = f(xk−1, uk−1)+, wk

zk = h(xk) + vk

where f() and h() are nonlinear functions of the model parameters. The EKF steps
are as follows.

Predict:

x̂−k = f(x̂+
k−1, uk−1)

P−k = FkP
+
k−1F

T
k +Qk

Linearize:

Fk =
∂f

∂x
|x̂−k ,uk

Gk =
∂f

∂u
|x̂−k ,uk

Hk =
∂h

∂x
|x̂−k
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Update:

yk = zk −Hkx̂
−
k

Sk = HkP
−
k H

T
k +Rk

Kk = P−k H
T
k S
−1
k

x̂+
k = x̂−k +Kkyk

P+
k = (I −KkHk)P

−
k



Chapter 8

Programming

8.1 Coding Style Guidelines

This ‘‘http://www.rudbek.com/Code_gui.htm#Guideline_No_Space_After_Asterisk_
Before_Identifier’’article has some good coding style guidelines:

For example, in C it’s apparently preferred to using int *myint rather than int*

myint, however in C++ it’s preferred to use int &myint rather than int& myint.

8.2 Virtual Functions

An abstract class is one which contains at least one pure virtual function, defined as
follows:

virtual void myfun() = 0;

An abstract class cannot be instantiated; it can only be derived from, or used to
create a base class pointer to a derived class object.

In contrast, a virtual function (not PURE) is a function which can be overridden
by a derived class. Actually, every base class function can be overridden... but virtual
functions called through pointers/references to the base class are resolved dynamically
(at run-time), whereas a non-virtual function which is overridden by a derived class will
have its base class function used when called through a base class pointer. This is what
we do to make functionality SL-independent!

8.3 Rule of Three

In pre-c++11, the “rule of three” says that if any of 1) destructor 2) copy constructor or
3) copy assignment operator has been defined for a class, then the others should probably
be defined as well. The reasoning is because if any of these functions is used without being
declared then it will be implicitly defined by the compiler with some default semantics.
If the compiler’s default semantics were insufficient enough to cause the programmer to

201

``http://www.rudbek.com/Code_gui.htm#Guideline_No_Space_After_Asterisk_Before_Identifier''
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implement one of these functions, it means that they are also *probably* insufficient for
the others.

8.4 Overloading and Overriding

Overloading is when a function is declared with the same name as an existing function
but with different parameters. Functions overloaded in a base class are inherited by a
derived class.

Overriding, on the other hand, is when a function with the same name AND param-
eters as a base class function is declared in a derived class. Calls to the function in the
derived class will use the derived class implementation, however the base class version
can still be called from the derived class using BaseClass::myFunction(). Note that if
you want the derived class implementation to be called from a pointer to the base class,
the base class function must be declared virtual.

In c++11, there is an override keyword to be used when overriding a virtual method
which makes it explicit that your function is overriding the base class function and, more
importantly, causes the compiler to check that the overriding is valid.

8.5 Move Semantics (C++11)

You may be familiar already with lvalues and rvalues, but C++11 introduced the concept
of rvalue references which are denoted with && (rather than the usual single & for lvalue
references). This makes it possible to differentiate between lvalues and rvalues, which
was not possible previously.

This means that, for example, you can overload a function which accepts a const

reference (which will normally take anything, lvalue or rvalue, as an input) with a version
explicitly taking an rvalue reference. This means you can define a version of the function
for the particular case in which a temporary (rvalue) is passed in, which can potentially
be useful.

This also allows the ability to “steal” the data from an rvalue and set its pointer to
null; we call this move semantics because the data is not copied from rvalue to lvalue
but rather taken ownership of by the lvalue. This means that we “steal” the data pointer
from the temporary object and then set it to NULL (so that when the temporary goes out
of scope and its memory is cleaned up, it doesn’t deallocate the memory pointed to by
the pointer we just stole!) The reason for this feature is to prevent making unnecessary
additional copies, moving rather than copying resources.

We could move lvalues into other lvalues but this is dangerous because we may, later
on, try to use the lvalue which was moved - and won’t be able to. However we can
safely move rvalues into lvalues via rvalue references because they will die when they go
out of scope. Actually, this is where std::move comes in; it DOES NOT actually move
anything - it just casts lvalues to rvalues so that the move constructor can be invoked.
Technically, std::move has nothing more to do with move semantics than that.
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The reason we pass unique ptr to classes (which we initialize at the highest, SL-
dependent level of the task using new) is because we can use polymorphism to pass base
class pointers and move them into derived class pointers. This keeps the SL dependency
at the highest level. HOWEVER I’m not sure why we need to use std::move when we are
passing rvalue references to unique ptrs in? why do we need my ptr (std::move(my ptr))

instead of just my ptr (my ptr) which will call the move constructor? And do we need
to have explicitly defined move constructors for our classes (because we do NOT)? I
*think* we have to use std::move because unique ptr cannot be copied, they must be
explicitly moved.

The default move constructor (generated by the compiler in the absence of others)
is to perform a member-wise move.

8.6 Inheritance

Within the base class, anything public can be seen by anyone, protected can be seen by
only the base and derived class, and private only within the base class.

Inheritance is something different: if the derived class inherits from the base class
publically, then a base class pointer can be used for a derived class object. This is not true
for other types of inheritance, in which only the derived class knows who it inherits from.
Thus, for polymorphism, we need public inheritance! Public inheritance basically means
all members’ access specifiers from the base class are preserved. Protected inheritance
means public and protected members of the base class become protected in the derived
class, and private inheritance means everything inherited becomes private. Note that
the base class’ private members are NEVER inherited.

Multiple inheritance uses the following syntax:

class MyClass : public BaseClassA, protected BaseClassB, private BaseClass C

{

}

and members from each base class are inherited accordingly.

8.7 C++11 Features

What is the difference between r=&T and r=std::ref(T)? The latter returns type
reference wrapper so that r isn’t actually a reference but a wrapper around a ref-
erence; use r.get() to obtain the reference, ie the same thing as &T. One nice feature
of std::ref() is that it’s possible to create an array of reference wrapper<type>

whereas it’s impossible to create an array of references normally.
Some features which previously existed in Boost were brought to C++11. One is

std::function which provides a wrapper around a function (or functor or lambda ex-
pression, etc) similar to how std::ref provides a reference wrapper. Similarly also,
this allows the creation of arrays of functions. Another is std::bind, which takes a
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function pointer and arguments and returns a std::function object which can then be
eg pushed back in a vector. This is how to add std::function objects which have argu-
ments. Additionally, bind allows using placeholders for function arguments, so that
arguments for which you don’t pass a value during binding can be set later, when
the function is called using fewer arguments (https://oopscenities.net/2012/02/
24/c11-stdfunction-and-stdbind/more details here).

std::thread replaces boost::thread for multithreading applications. You can
launch a thread which executes a function by passing a reference to the function and
the this pointer for the class which the function belongs to, followed by the arguments
of the function (it seems you don’t need bind as in the old boost method??) Here’s an
example:

std::thread(&WalkingStateMachine::rosbagThreadLoop, this, bag_filename)

where bag filename is a parameter for the function rosbagThreadLoop which is
defined elsewhere.

Ranged-based for loops allow for iterating over containers like we do in python (eg for

name in names). This can be combined with the auto keyword to make for extremely
easy loops:

for(const auto &myiter : mycontainer) {}

Here, myiter does not need to be dereference as its already a reference to each of the
elements in mycontainer. The auto keyword tells the compiler to deduce the proper
data type as needed from function/variable definitions. For example,

MyDataType myfunction(void){}

auto a = myfunction(); // the compiler figures out that ’a’ needs to have type

’MyDataType’

This is particularly useful for iterators, which typically have very lengthy names.
Using auto saves typing and space but should not be abused because it can make code
less readable. Declaring a variable to have type auto, eg:

auto a;

will NOT compile which forces initialization, which can be desirable. Note that auto
iterators will always be non-const, otherwise a const iterator has to be explicitly used.

8.7.1 typedef versus using

In C++11, we are able to use using to define type aliases in the same way typedef was
used, for example:

typedef std::vector<int> int_vec;

using int_vec = std::vector<int>; // C++11

https://oopscenities.net/2012/02/24/c11-stdfunction-and-stdbind/
https://oopscenities.net/2012/02/24/c11-stdfunction-and-stdbind/
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There is no difference between these commands, but using may be more natural.
The reason this new keyword was introduced was to handle typedef cases involving
templates like

template<typename T> using my_vec = std::vector<T>;

8.8 STL (Standard Template Library) Vectors

In C++11 we can brace-initialize std::vector as, for example,

std::vector<std::vector<int>> myvec = {{1, 2, 3}, {4, 5, 6}};

8.9 Iterators

Iterators allow for iterating through a container of elements of any data type, like pointers
do with C-style arrays. We define and use an iterator like:

std::vector<int>::iterator it;

for(it = myvec.begin(); it != myvec.end(); ++it)

{

std::cout << *it << std::endl;

}

Note that we use begin() and end() to get the bounds of the container and that we
use != rather than < because it has less undefined behavior for some iterators. Also note
that if myvec were of type const std::vector<int>, we would need a const iterator

to ensure that we don’t change any elements of myvec. Also note that * dereferences
the iterator to the corresponding element.

As detailed in a different section, in C++11 the auto keyword allows us to replace
the bulky iterator definition, and go even further using range-based for loops such as

for(auto it : myvec)

{

std::cout << it << std::endl;

}

We can instead use const auto &it. Abide by the following rules:

• Choose auto x when you want to work with copies.

• Choose auto &x when you want to work with original items and may modify them.

• Choose auto const &x when you want to work with original items and will not
modify them.
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Note that we don’t need to dereference x in any of these cases, as we would have to
have done with a normal old iterator.

8.10 Dependency Injection

This is the term for what we do in order to make our code SL-independent (write abstract
base classes with pure virtual functions, make the derived class SL-dependent and then
use base class pointers to at top level to inject the SL dependencies).

8.11 The static keyword

The static keyword on a class member means that that member is shared by all in-
stances of the class and is accessible using the class scope. A static member variable
thus has no this pointer because it doesn’t belong to a specific class instance.

Static member functions similarly are shared among all class instances and can only
access other static member functions and variables. Note that static member variables
must be declared in the class cpp file or you will get undefined reference linker errors.

Static is useful because it lets all instances of a class share state and gives a way to
use functions in a class without having to create an instance, but they should be used
carefully because they are essentially global variables.

8.12 Singleton Design Pattern

A singleton is a class which is ensures only one instance can be instantiated - this could
be useful for example in creating a logger class or a game loop class. This design pattern
is achieved using the static keyword as follows1:

class S

{

public:

static S& getInstance()

{

static S instance; // Guaranteed to be destroyed.

// Instantiated on first use.

return instance;

}

private:

S() {} // Constructor? (the {} brackets) are needed

here.

// C++ 03

// ========

// Dont forget to declare these two. You want to make sure they

1https://stackoverflow.com/questions/1008019/c-singleton-design-pattern
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// are unacceptable otherwise you may accidentally get copies of

// your singleton appearing.

S(S const&); // Don’t Implement

void operator=(S const&); // Don’t implement

// C++ 11

// =======

// We can use the better technique of deleting the methods

// we don’t want.

public:

S(S const&) = delete;

void operator=(S const&) = delete;

// Note: Scott Meyers mentions in his Effective Modern

// C++ book, that deleted functions should generally

// be public as it results in better error messages

// due to the compilers behavior to check accessibility

// before deleted status

};

Note that an object of this class cannot be created as normal because its constructor
is private; instead, the instance() function must be called which returns a static

object and thus remains in scope like a global variable (further calls to instance() will
return the same object).

8.13 The friend Keyword

The friend keyword allows a class to declare a function as being accessible from another
class. The function can then be implemented outside the class which declares it, but
an instance of the class which declared it must be passed because, like static members,
there is no this pointer.

Similarly, an entire class can be declared as a friend of another class to give the
second class access to all of the first class’ members. Use of friend sometimes requires
a forward declaration of a class which it depends on.

Friend is useful to give access to class variables to another class without needing
public getter functions, but violates encapsulation and could be dangerous.

8.14 The const Keyword and const “Correctness”

The const keyword does different things depending on where it’s placed in eg a function
definition. For example:

f(const int &myint)

is the same as
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f(int const &myint)

in that they both accept a reference to an int which is immutable. It’s easy to
understand the meaning of either of these by reading from right to left. Here, we have
“myint is a reference to a const int.”

So-called const “correctness” simply refers to the use of the const keyword to protect
certain data from being modified. To protect an input to function, you have a few
options:

• Pass a const reference, eg void myfunction(const Object& myobj); which is
equivalent to void myfunction(Object const& myobj);

• Pass a const pointer, eg void myfunction(const Object* myobj); which is
equivalent to void myfunction(Object const* myobj);. This is always con-
fusing because the pointer is not const, the object it points to is const!

• Pass by value (makes a copy), eg void myFunction(Object myobj);

Again, reading the pointer declarations right-to-left helps clear up ambiguity about
what it means:

• const X* p means p points to an X that is const: the X object cant be changed
via p but the pointer can.

• X* const p means p is a const pointer to an X that is non-const: you cant change
the pointer p itself, but you can change the X object via p.

• const X* const p means p is a const pointer to an X that is const: you cant
change the pointer p itself, nor can you change the X object via p.

So if you insist on passing a const pointer, you should use const X* const p so
that neither the object NOR POINTER can be changed.

A const member function in a class has the form:

void myfunction(int a) const;

The input is irrelevant here, but the trailing const says that this function will not
change *this in any way; we call it an inspector function.

Const overloading allows overloading (redefining) a member function with a trailing
const. So you can define:

void myfunction(int a);

void myfunction(int a) const;

And the latter one will get called for a const object, while the former will be called
on a non-const object. I’m not sure when this is useful.
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8.15 C-style struct

Structures in C take the form:

struct DataStruct {

int a;

char* str;

float b;

} mystruct;

where mystruct is a variable of type struct DataStruct which gets initialized at
the same time as DataStruct is defined. To declare another struct of this type:

struct DataStruct othermystruct;

To make the syntax less cumbersome, we can add a typedef after the struct defini-
tion:

typedef struct DataStruct DataStruct;

Or, to be most concise, we can make the struct definition happen INSIDE the typedef:

typedef struct {

int a;

char* str;

float b;

} DataStruct;

where DataStruct is not a variable anymore but the actual type which finishes the
typedef statement.

In C, you must initialize structs after declaring them, eg:

mystruct.a = 1;

mystruct.b = 2.66;

mystruct.str = malloc(10);

mystruct.str = ‘‘teststring’’;

Note that we have to allocate memory for the char* struct member using malloc.
Now, what if we want to dynamically allocate a struct? We would again use malloc

as

DataStruct* mystruct = malloc(sizeof(DataStruct));

In C++ we could use new, but in C we use malloc; both return pointers to the
dynamically-allocated data. We again then have to separately allocate space for the
string so be careful. Note that sizeof(DataStruct) will not necessarily return sizeof(int)+sizeof(char*)+sizeof(float)

because the compiler will (probably) use struct padding to ensure that variables are self-
aligned in memory, meaning that they start at address spaces which are multiples of
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the system word size (32 bit or 64 bit). You can force structures to not use padding by
packing them, however this could lead to slower access time. This is done as:

typedef struct __attribute__((__packed__)) {

int a;

char* str;

float b;

} DataStruct;

8.16 The inline Keyword

The keyword inline makes a function into a macro, ie its usage in code simply pastes
its definition in place as C-style macros did. This speeds up program execution by
removing the overhead of function calling, however it means that the function is resolved
at compile-time and thus requires a full recompilation if the function has changed. It
also increases the executable size if code is excessively copied for this purpose.

8.17 Semaphores, Mutexes, and the atomic Keyword

A semaphore (or “counting” semaphore) is a flow control device used to control access
to resources, like shared memory, in a parallelized program. Semaphores are basically
numbers which can be incremented/decremented with “p” and “v” operations.

A mutex (short for mutual exclustion) is a binary semaphore (is a special case) which
can be used to synchronize operations between threads in a multithreaded program.
Unlike semaphores, only the thread which has “locked” the mutex can “unlock” it, so
they are used more often to strictly control access to data.

As an alternative to mutexes, one can use atomic variables from C++ available in
<atomic>. These are generally faster than using mutexes for simple data types. For
example, if an int count is shared between threads which all may try to increment it at
once, making it a std::atomic<int> instead will make the operations on it threadsafe
without needing to use a mutex.

8.18 Compilation and Linking

Building code involves two steps: compilation and linking. First, the compiler performs
preprocessing to deal with things like includes, defines and macros (preprocessing di-
rectives are specified with the # symbol), then it compiles the code into binary object
files. These object files (which have a .o suffix) cannot actually be used because they
do not include any definitions. The object files are then linked together and against
external libraries and will catch definition (and multiple definition) errors, whereas it’s
the compiler than catches syntax errors.
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There are two types of libraries in C/C++ - static and dynamic. Static libraries
(usually ending in .a) are linked by essentially copying them into the resulting binary as
many times as there are applications which link against them - this makes executables
larger but reduces overhead by removing function calls.

Instead, we can create a dynamically-linked library (usually ending in .so) which are
“Shared Object libraries.” There exists one copy of the library which all applications
linked against it will refer to. This reduces executable size and the amount of disk space
and memory consumed.

Libraries in general are nice because they can be packaged up and provided to a
user without the user having to know how functions are implemented; a header file and
library file are sufficient for it to be used.

8.19 The extern Keyword

In C, the extern keyword is used to declare global variables. When declared as for
example extern int i, the memory for i is not allocated and it thus cannot be used
because it was never defined.

However, say we first #include someheader.h which defines int i - then i is defined
and can be used. However, extern int i = 1; will be defined immediately because
there is an initial value supplied.

For functions in C, extern tells the compiler that the function exists somewhere else
and resolving it is deferred to the linker. However, this is actually done by default; all
functions are actually effectively preceded by extern implicitly, which is what allows us
to declare functions in a header and define them in a source file.

A special and important use of extern is to expose C++ code to be used in C as
follows;

extern ‘‘C’’ {

// code here

}

This exposes the code inside the brackets to C. Since the C++ compiler normally
mangles the name of the function (to make it unique, by adding something about pa-
rameters, since overloading is possible), we need to explicitly tell it not to using this
structure.

8.20 STL map

In C++, std::map<key type, value type> implements a map from keys to values for
any data types. This is implemented as a binary search tree rather than using a hash
function.

When we iterate through a map, we can use the first and second attributes of the
iterator to access the key and value, respectively. For example:
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#include <map>

#include <string>

#include <iostream>

std::map<std::string, int> mymap = {{‘‘Apple’’, 1}, {‘‘Orange’’, 2},

{‘‘Pear’’, 3}};

for(const auto &it : mymap)

{

std::cout << ‘‘Key: ‘‘ << it.first << ‘‘ Value: ‘‘ << it.second << std::endl;

}

8.21 Error Handling

In C++ there are two common ways to handle errors in a program: exceptions and as-
sertions. Generally, it is standard practice to use exceptions for catching errors in public
functions (for example, someone passed in an invalid filename or there isn’t sufficient
memory to allocate resources) while asserations should be used within private functions
to catch issues with your own code (used for internal testing to find things which should
never happen in production code).

8.22 RAII

RAII or Resource Allocation is Initialization is a programming technique in object-
oriented languages which binds the lifespan of a resource which must be acquired (for
example, dynamically-allocated memory) to the lifespan of an object through which it
is accessed.

A class can encapsulate such a resource according to RAII by allocating memory
during initialization of an instance (in its constructor) and releasing the resource when
it leaves scope or itself is deleted (in its destructor). A program then follows RAII if the
resource is only ever used through an instance of the class.
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